Abstract

We present a novel and robust design for a photonic crystal fiber with flattened dispersion, a highly nonlinear coefficient, and low confinement loss for its dual concentric core structure. The proposed fiber has a modest number of design parameters. Analysis results show that the proposed eight-ring photonic crystal fiber is obtained with a nonlinear coefficient greater than 33W1km1 and a near-zero dispersion slope of 7.828×104ps/nm2/km at 1550nm. Ultraflat dispersion with a value between 1.380 and +0.9860ps/nm/km and a superlow-order confinement loss of 104dB/km are simultaneously obtained ranging from 1400 to 1625nm. For practical fabrication, the influence of random imperfections of airhole diameters on dispersion and nonlinearity is discussed to verify the robustness of our design.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. S. M. Abdur Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett 20, 249-251(2008).
    [CrossRef]
  3. T.-L. Wu and C.-H. Chao, “A novel ultra flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69(2005).
    [CrossRef]
  4. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultra flattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  5. K. Saitoh, N. J. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365-8371 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8365.
    [CrossRef] [PubMed]
  6. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B 20, 1427-1436 (2003).
    [CrossRef]
  7. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization maintaining photonic crystal fiber,” Opt. Express 11, 1537-1540 (2003),
    [CrossRef] [PubMed]
  8. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027-2032 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2027.
    [CrossRef] [PubMed]
  9. S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.
  10. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084-1100 (2000).
    [CrossRef]
  11. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363-370 (1992).
    [CrossRef]
  12. K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
    [CrossRef]
  13. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
    [CrossRef]
  14. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  15. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341-348 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-341.
    [PubMed]
  16. K. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799-2807 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-2799.
    [CrossRef] [PubMed]
  17. G. Zhou and L. Hou, “Study on the designed theory for the structure of photonic crystal fiber preform,” in Proceedings of the Doctoral Forum of China (Huazhong University of Science and Technology, 2006), pp. 012-017.

2008

S. M. Abdur Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett 20, 249-251(2008).
[CrossRef]

2006

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

2005

2004

2003

2002

2000

1996

1992

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363-370 (1992).
[CrossRef]

Abdur Razzak, S. M.

S. M. Abdur Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett 20, 249-251(2008).
[CrossRef]

S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Andres, P.

Atkin, D. M.

Birks, T. A.

Burdge, G.

Chao, C.-H.

T.-L. Wu and C.-H. Chao, “A novel ultra flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69(2005).
[CrossRef]

Eggleton, B. J.

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Ferrando, A.

Finazzi, V.

Florous, N. J.

Goffar Khan, M. A.

S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Hadley, G. R.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363-370 (1992).
[CrossRef]

Higa, H.

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

Hou, L.

G. Zhou and L. Hou, “Study on the designed theory for the structure of photonic crystal fiber preform,” in Proceedings of the Doctoral Forum of China (Huazhong University of Science and Technology, 2006), pp. 012-017.

Hussain, M. Y.

S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.

Kaneshima, K.

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

Kawanishi, S.

Kerbage, C.

Knight, J. C.

Koshiba, M.

Kubota, H.

Kuhlmey, B.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Miret, J. J.

Monro, T. M.

Mortensen, N. A.

Nagata, Y.

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

Namihira, Y.

S. M. Abdur Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett 20, 249-251(2008).
[CrossRef]

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Reichenbach, K.

Renversez, G.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

Saitoh, K.

Silvestre, E.

Tanaka, M.

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Wu, T.-L.

T.-L. Wu and C.-H. Chao, “A novel ultra flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69(2005).
[CrossRef]

Xu, C.

Yamaguchi, S.

Yamamoto, T.

Zhou, G.

G. Zhou and L. Hou, “Study on the designed theory for the structure of photonic crystal fiber preform,” in Proceedings of the Doctoral Forum of China (Huazhong University of Science and Technology, 2006), pp. 012-017.

Zolla, F.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Zou, N.

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

IEEE J. Quantum Electron.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363-370 (1992).
[CrossRef]

IEEE Photon. Technol. Lett

S. M. Abdur Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett 20, 249-251(2008).
[CrossRef]

IEEE Photon. Technol. Lett.

T.-L. Wu and C.-H. Chao, “A novel ultra flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69(2005).
[CrossRef]

IEICE Trans. Electron.

K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers with strong confinement field,” IEICE Trans. Electron. E89-C, 830-837 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

S. M. Abdur Razzak, M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, “Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems,” in Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE) (2008), pp.570-573.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

G. Zhou and L. Hou, “Study on the designed theory for the structure of photonic crystal fiber preform,” in Proceedings of the Doctoral Forum of China (Huazhong University of Science and Technology, 2006), pp. 012-017.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the proposed HNL PCF.

Fig. 2
Fig. 2

(a) Dispersion curve and (b) nonlinearity and confinement loss curves as a function of wavelength for the proposed eight-ring HNL PCF with d 1 / Λ = d 4 / Λ = 0 . 39 , d 2 / Λ = d 3 / Λ = d / Λ = 0.81 , and Λ = 0.87 μm .

Fig. 3
Fig. 3

(a) Confinement loss curves with different ring numbers for the HNL PCF and (b) electric field distribution at 1550 nm for the proposed HNL PCF with eight rings.

Fig. 4
Fig. 4

(a) Dispersion and (b) nonlinearity of a PCF with different d 1 , d 2 / Λ = d 3 / Λ = d / Λ = 0.81 , and Λ = 0.87 μm .

Fig. 5
Fig. 5

(a) Dispersion and (b) nonlinearity of the PCF for ten samples within 3% deviation of the optimum value.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D ( λ ) = D w ( λ ) + D m ( λ ) ,
D w ( λ ) = λ c d 2 Re [ n eff ] d λ 2 ,
D m ( λ ) = λ c d 2 n m d λ 2 ,
γ = 2 π λ n 2 A eff ,
A eff = ( | E | 2 d x d y ) 2 | E | 4 d x d y
L c = 8.686 k 0 Im [ n eff ] ,

Metrics