Abstract

In this article, we report the use of a fiber-optic Mach–Zehnder interferometer as a high-precision temperature sensor, and we investigate the effects of small temperature fluctuations on the reliability of the device as a surface biosensor. We found that typical temperature fluctuations generally cause sensor responses large enough that they must be compensated for before reliable surface chemistry measurements can be undertaken. These findings are particularly relevant in light of the recent surge of interest in fiber-optic based biosensors of various designs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
    [CrossRef] [PubMed]
  2. Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999).
    [CrossRef]
  4. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
    [CrossRef]
  5. H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: thickness dependence,” J. Mater. Sci., Mater. Electron. 12, 361–364 (2001).
    [CrossRef]
  6. Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
    [CrossRef] [PubMed]
  7. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32, 2541–2543 (2007).
    [CrossRef] [PubMed]

2010 (1)

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

2007 (1)

2001 (1)

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: thickness dependence,” J. Mater. Sci., Mater. Electron. 12, 361–364 (2001).
[CrossRef]

1999 (1)

Bao, X.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).

Barnes, J.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Bennion, I.

Bock, W.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Chen, L.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).

Chen, X.

Davies, E.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Fraser, J. M.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Greig, P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Harris, E.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).

Hine, A.

Hirao, K.

Hughes, M.

Kazansky, P. G.

Kim, H. K.

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: thickness dependence,” J. Mater. Sci., Mater. Electron. 12, 361–364 (2001).
[CrossRef]

Kondo, Y.

Li, Y.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).

Loock, H.-P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Mitsuyu, T.

Nouchi, K.

Oleschuk, R. D.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Shi, F. G.

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: thickness dependence,” J. Mater. Sci., Mater. Electron. 12, 361–364 (2001).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Sugden, K.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Tian, Z.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Watanabe, M.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

Zhang, L.

Zhou, K.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta. (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett. (2)

Y. Li, L. Chen, E. Harris, and X. Bao, “Double-pass inline fiber taper Mach–Zehnder interferometer sensor,” IEEE Photonics Technol. Lett. (to be published).

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20, 626–628 (2008).
[CrossRef]

J. Mater. Sci., Mater. Electron. (1)

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: thickness dependence,” J. Mater. Sci., Mater. Electron. 12, 361–364 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the Mach–Zehnder apparatus as used in the experiment described in the text (not to scale). PS, plastic stage; OF, optical fiber; T, tapered regions of optical fiber; EG, epoxy glue used to secure the fiber to the stage; FH, fiber holder, into which reagents were added and removed over the course of the experiment. The sensing region of the interferometer comprises the stretch of optical fiber between the two tapers (T).

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus. The chemical agents and DNA involved in the hybridization reaction were all pipetted into and out of the plastic stage surrounding the interferometer.

Fig. 3
Fig. 3

Signal observed by the fiber-optic sensor during the first 50 min of the DNA hybridization reaction.

Fig. 4
Fig. 4

Temperature of the solution of target DNA during the first 50 min of the DNA hybridization.

Fig. 5
Fig. 5

Solution temperature plotted against the recorded signal.

Metrics