Abstract

Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interfero meter calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500560nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×105, and the phase angle precision was typically 2.5×106 over the wide wavelength region.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
    [CrossRef]
  2. J. Ge, “Fixed delay interferometry for Doppler extrasolar planet detection,” Astrophys. J. 571, L165–L168 (2002).
    [CrossRef]
  3. J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
    [CrossRef]
  4. T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
    [CrossRef]
  5. E. Ribak, C. Roddier, F. Roddier, and J. B. Breckinridge, “Signal-to-noise limitations in white light holography,” Appl. Opt. 27, 1183–1186 (1988).
    [CrossRef] [PubMed]
  6. D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
    [CrossRef]
  7. P. de Groot, X. C. de Lega, J. Kramer, and M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41, 4571–4578 (2002).
    [CrossRef] [PubMed]
  8. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607–4615 (2000).
    [CrossRef]
  9. S. Ridgway, “A Fourier transform spectrophotometer for astronomical applications, 700–10000cm−1,” Rev. Sci. Instrum. 45, 676–679 (1974).
    [CrossRef]
  10. D. Baker, A. Steed, and A. T. Stair Jr., “Development of infrared interferometry for upper atmospheric emission studies,” Appl. Opt. 20, 1734–1746 (1981).
    [CrossRef] [PubMed]
  11. Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
    [CrossRef]
  12. S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
    [CrossRef]
  13. K. B. Rochford and S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836(1999).
    [CrossRef]
  14. X. Wan, J. Wang, and J. Ge, “Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam,” Appl. Opt. 48, 4909–4916 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

2006 (1)

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

2002 (3)

J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
[CrossRef]

J. Ge, “Fixed delay interferometry for Doppler extrasolar planet detection,” Astrophys. J. 571, L165–L168 (2002).
[CrossRef]

P. de Groot, X. C. de Lega, J. Kramer, and M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41, 4571–4578 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (1)

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

1995 (1)

D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
[CrossRef]

1988 (2)

Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
[CrossRef]

E. Ribak, C. Roddier, F. Roddier, and J. B. Breckinridge, “Signal-to-noise limitations in white light holography,” Appl. Opt. 27, 1183–1186 (1988).
[CrossRef] [PubMed]

1981 (1)

1974 (1)

S. Ridgway, “A Fourier transform spectrophotometer for astronomical applications, 700–10000cm−1,” Rev. Sci. Instrum. 45, 676–679 (1974).
[CrossRef]

Arakawa, M.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

Baker, D.

Breckinridge, J. B.

Cochran, W. D.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Cohen, R.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

de Groot, P.

de Lega, X. C.

Dewitt, C.

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Dyer, S. D.

Endl, M.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Erskine, D. J.

J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
[CrossRef]

Flavin, D. A.

D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607–4615 (2000).
[CrossRef]

D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
[CrossRef]

Fleming, S. W.

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Ford, E. B.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Fuji, T.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

Gault, W. A.

Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
[CrossRef]

Ge, J.

X. Wan, J. Wang, and J. Ge, “Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam,” Appl. Opt. 48, 4909–4916 (2009).
[CrossRef] [PubMed]

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
[CrossRef]

J. Ge, “Fixed delay interferometry for Doppler extrasolar planet detection,” Astrophys. J. 571, L165–L168 (2002).
[CrossRef]

Guo, P.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Hattori, T.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

Henry, G. W.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Heuvel, A. Vanden

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Israelian, G.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Jones, J. D.C.

D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
[CrossRef]

Kane, S. R.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Koehler, R. A.

Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
[CrossRef]

Kramer, J.

Lu, Z. J.

Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
[CrossRef]

Mahadevan, S.

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Martin, E. L.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

McBride, R.

D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
[CrossRef]

McDavitt, D.

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

Montes, D.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Murphy, D. F.

Nakatsuka, H.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

Ramsey, L. W.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Ribak, E.

Ridgway, S.

S. Ridgway, “A Fourier transform spectrophotometer for astronomical applications, 700–10000cm−1,” Rev. Sci. Instrum. 45, 676–679 (1974).
[CrossRef]

Rochford, K. B.

Roddier, C.

Roddier, F.

Rushford, M.

J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
[CrossRef]

Schneider, D. P.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Stair, A. T.

Steed, A.

Turzhitsky, M.

Valenti, J.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Van Eyken, J.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Van Eyken, J. C.

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

Wan, X.

X. Wan, J. Wang, and J. Ge, “Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam,” Appl. Opt. 48, 4909–4916 (2009).
[CrossRef] [PubMed]

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

Wang, J.

Wittenmyer, R. A.

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. (2)

J. Ge, “Fixed delay interferometry for Doppler extrasolar planet detection,” Astrophys. J. 571, L165–L168 (2002).
[CrossRef]

J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683–695 (2006).
[CrossRef]

J. Lightwave Technol. (2)

D. A. Flavin, R. McBride, and J. D.C. Jones, “Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand,” J. Lightwave Technol. 13, 1314–1323 (1995).
[CrossRef]

K. B. Rochford and S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836(1999).
[CrossRef]

J. Phys. E. (1)

Z. J. Lu, W. A. Gault, and R. A. Koehler, “A new scanning method for field-compensated Michelson Interferometers,” J. Phys. E. 21, 68–71 (1988).
[CrossRef]

Publ. Astron. Soc. Pac. (2)

S. Mahadevan, J. Ge, S. W. Fleming, X. Wan, C. Dewitt, J. C. Van Eyken, and D. McDavitt, “An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements,” Publ. Astron. Soc. Pac. 120, 1001–1015(2008).
[CrossRef]

J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016–1028 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Ridgway, “A Fourier transform spectrophotometer for astronomical applications, 700–10000cm−1,” Rev. Sci. Instrum. 45, 676–679 (1974).
[CrossRef]

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, “A white-light Michelson interferometer in the visible and near infrared regions,” Rev. Sci. Instrum. 69, 2854–2858 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Field-compensated scanning Michelson interferometer with a translating prism.

Fig. 2
Fig. 2

Determining the optimal translating angle for field-compensated scanning. The blue dotted line represents the initial prism location.

Fig. 3
Fig. 3

Measuring group delay of a fixed Michelson interferometer with a scanning white light interferometer. A multimode fiber-coupled green LED was the white light source, and a red He–Ne laser was the wavelength reference. A green He–Ne laser and an I 2 cell were independently used for dispersion calibrations.

Fig. 4
Fig. 4

Typical scanning interferometer signals, including one channel of laser reference and another channel of the white light interferogram signals. The upper section shows the detail of the three interferogram signals.

Fig. 5
Fig. 5

(a) Actual frequency u compared to distorted frequency u . Using a low order polynomial fitting, (b) represents the fitting residual.

Fig. 6
Fig. 6

Reference I 2 FTS spectrum is resampled in u space to compare with the measured FTS spectrum.

Fig. 7
Fig. 7

Using the result of dual-laser calibration with ray tracing as the reference, compare the difference in using other calibration methods including FTS extrapolation, dual-laser calibration with common path approximation, ray tracing with 0.1 mrad increment in translating angle γ, and ray tracing with a temperature increment of 5 ° C .

Fig. 8
Fig. 8

Fourier transform produces amplitude (a) and chromatic phase shift (b) of the interferogram signals. The unfolded phase shift is only valid within the central frequency region 1.13 1.3 , where the corresponding amplitude is high enough.

Fig. 9
Fig. 9

At 11 phase steps of the fixed interferometer and at the green laser wavelength, (a) the processed group delay in the form of d ϕ d u , and (b) proceed phase angle in the form of cos ( ϕ ) . Direct measurements of interferometer transmitted laser power signal in (c) agrees with (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 1 + S 2 / n + S 3 2 H * tan ( β / 2 ) .
S 1 * cos β + S 2 * cos ( β / 2 ) + S 3 = H * sin β .
2 sin γ sin α 2 / cos ( γ + ( α + β ) / 2 ) = n ( 1 cos β ) / ( n cos β 2 1 ) .
W j = 0 χ ( u ) cos ( ϕ j S ( u ) ) d u + 1 2 ( 0 χ ( u ) cos ( ϕ j S ( u ) + ϕ C ( u ) ) d u + 0 χ ( u ) cos ( ϕ j S ( u ) ϕ C ( u ) ) d u ) ,
W P 0 = 0 χ ( u ) cos ( ϕ P 0 S ( u ) ) d u , W P = 1 2 0 χ ( u ) cos ( ϕ P S ( u ) + ϕ C ( u ) ) d u , W P + = 1 2 0 χ ( u ) cos ( ϕ P + S ( u ) ϕ C ( u ) ) d u .
ϕ ˜ P ( u ) = Arg ( ϕ P S ( u ) + ϕ C ( u ) ) , ϕ ˜ P 0 ( u ) = Arg ( ϕ P 0 S ( u ) ) , ϕ ˜ P + ( u ) = Arg ( ϕ P + S ( u ) ϕ C ( u ) ) .
ϕ C ( u ) = ϕ ˜ P ( u ) ϕ ˜ P 0 ( u ) + ( P 0 P ) · u π / 5 + 2 k π ,
ϕ C ( u ) = ϕ ˜ P 0 ( u ) ϕ ˜ P + ( u ) + ( P + P 0 ) · u π / 5 + 2 l π ,

Metrics