Abstract

We derive an analytic equation for a ratiometric wavelength measurement system and analyze the influence of the optical source signal bandwidth. Our investigation shows that in a particular optical sensing system, the higher the bandwidth of the optical signal, the better resolution the system will achieve. Experiments based on two types of optical signals (output signal of a tunable laser and a fiber Bragg grating) were carried out, and experimental results verified both the simulation results and the theoretical analysis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
    [CrossRef]
  2. M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
    [CrossRef]
  3. J. Mora, J. Luis Cruz, M. V. Andres, and R. Duchowica, “Simple high-resolution wavelength monitor based on a fiber Bragg grating,” Appl. Opt. 43, 744–749 (2004).
    [CrossRef] [PubMed]
  4. Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multi-channel fiber Bragg grating,” J. Lightwave Technol. 24, 4433 (2006).
    [CrossRef]
  5. Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
    [CrossRef]
  6. C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
    [CrossRef]
  7. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
    [CrossRef]
  8. M. A. Davis and A. D. Kersey, “All fiber Bragg grating sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
    [CrossRef]
  9. Q. Wu, A. M. Hatta, Y. Semenova, and G. Farrell, “Use of a SMS fiber filter for interrogating FBG strain sensors with dynamic temperature compensation,” Appl. Opt. 48, 5451–5458 (2009).
    [CrossRef] [PubMed]
  10. Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
    [CrossRef]
  11. X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
    [CrossRef]
  12. Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789–7792 (2005).
    [CrossRef] [PubMed]
  13. Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
    [CrossRef]
  14. A. T. Georges and S. N. Dixit, “Laser line-shape effects in resonance fluorescence,” Phys. Rev. A 23, 2580–2593(1981).
    [CrossRef]
  15. Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Express 13, 4476–4484 (2005).
    [CrossRef] [PubMed]

2010 (2)

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

2009 (1)

2008 (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

2007 (1)

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

2006 (2)

Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multi-channel fiber Bragg grating,” J. Lightwave Technol. 24, 4433 (2006).
[CrossRef]

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

2005 (3)

2004 (1)

1996 (1)

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

1994 (1)

M. A. Davis and A. D. Kersey, “All fiber Bragg grating sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

1992 (1)

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

1981 (1)

A. T. Georges and S. N. Dixit, “Laser line-shape effects in resonance fluorescence,” Phys. Rev. A 23, 2580–2593(1981).
[CrossRef]

Andres, M. V.

Chan, H. P.

Chiang, Y. J.

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

Chu, P. L.

Dakin, J. P.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Davis, M. A.

M. A. Davis and A. D. Kersey, “All fiber Bragg grating sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

Demokan, M. S.

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

Dixit, S. N.

A. T. Georges and S. N. Dixit, “Laser line-shape effects in resonance fluorescence,” Phys. Rev. A 23, 2580–2593(1981).
[CrossRef]

Duchowica, R.

Farrell, G.

Freir, T.

Geiger, H.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Georges, A. T.

A. T. Georges and S. N. Dixit, “Laser line-shape effects in resonance fluorescence,” Phys. Rev. A 23, 2580–2593(1981).
[CrossRef]

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

Hatta, A. M.

Hsu, Y. S.

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

Jin, W.

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

Kersey, A. D.

M. A. Davis and A. D. Kersey, “All fiber Bragg grating sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

Liu, K.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Liu, W. F.

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

Lu, C.

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

Luis Cruz, J.

Measures, R. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

Mora, J.

Peng, Q. Z.

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

Rajan, G.

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

Semenova, Y.

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

Q. Wu, A. M. Hatta, Y. Semenova, and G. Farrell, “Use of a SMS fiber filter for interrogating FBG strain sensors with dynamic temperature compensation,” Appl. Opt. 48, 5451–5458 (2009).
[CrossRef] [PubMed]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

Walker, R. B.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

Wang, L. K.

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

Wang, P.

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

Wang, Q.

Wu, Q.

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, A. M. Hatta, Y. Semenova, and G. Farrell, “Use of a SMS fiber filter for interrogating FBG strain sensors with dynamic temperature compensation,” Appl. Opt. 48, 5451–5458 (2009).
[CrossRef] [PubMed]

Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multi-channel fiber Bragg grating,” J. Lightwave Technol. 24, 4433 (2006).
[CrossRef]

Xiao, L.

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Yang, X. F.

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

Zhao, C. L.

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

Zhou, Z. Q.

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

M. A. Davis and A. D. Kersey, “All fiber Bragg grating sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Y. S. Hsu, L. K. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photon. Technol. Lett. 18, 874–876 (2006).
[CrossRef]

IEEE Sens. J. (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Multiparameter sensor based on single high-order fiber Bragg grating made with IR-femtosecond radiation in single-mode fibers,” IEEE Sens. J. 8, 1223–1228 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multi-channel fiber Bragg grating,” J. Lightwave Technol. 24, 4433 (2006).
[CrossRef]

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Opt. Commun. (2)

X. F. Yang, C. L. Zhao, Q. Z. Peng, Z. Q. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter,” Opt. Commun. 250, 63–68 (2005).
[CrossRef]

C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Opt. Commun. 276, 242–245(2007).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

Q. Wu, G. Rajan, P. Wang, Y. Semenova, and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter based ratiometric system,” Opt. Laser Technol. 42, 1032–1037 (2010).
[CrossRef]

Phys. Rev. A (1)

A. T. Georges and S. N. Dixit, “Laser line-shape effects in resonance fluorescence,” Phys. Rev. A 23, 2580–2593(1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a ratiometric wavelength measurement system.

Fig. 2
Fig. 2

Measured spectral responses of a tunable laser.

Fig. 3
Fig. 3

Transmission response of edge filters and corresponding ratios for input optical signals with different Δ λ 0 when the slope of the edge filter m equals (a) 0.4 dB / nm and (b) 0.2 dB / nm .

Fig. 4
Fig. 4

Ratio slope response variations versus optical bandwidth at 1560 nm .

Fig. 5
Fig. 5

Measured spectral responses of five FBGs.

Fig. 6
Fig. 6

Measured transmission responses of the edge filters and corresponding system ratios.

Tables (1)

Tables Icon

Table 1 Signal-to-Noise Ratio and 3 dB Bandwidth Values for the Two Optical Sources

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

R ( λ 0 ) = 10 log 10 [ I λ 0 ( λ ) T ( λ ) d λ + N e I λ 0 ( λ ) d λ + N r ] ,
T ¯ ( λ ) = T ¯ ( λ 10 ) + T ¯ ( λ 20 ) T ¯ ( λ 10 ) λ 20 λ 10 ( λ λ 10 ) = T ¯ ( λ 10 ) + m ( λ λ 10 ) ,
T ¯ ( λ ) = 10 log 10 [ T ( λ ) ] .
I λ 0 ( λ ) = { P | λ λ 0 | Δ λ 0 / 2 λ 1 λ λ 2 N s | λ λ 0 | > Δ λ 0 / 2 λ 1 λ λ 2 ,
SNR = 10 log 10 ( N s P ) ,
R ( λ 0 ) = 10 log 10 { P λ 0 Δ λ 0 / 2 λ 0 + Δ λ 0 / 2 T ( λ ) d λ + N s [ λ 1 λ 0 Δ λ 0 / 2 T ( λ ) d λ + λ 0 + Δ λ 0 / 2 λ 2 T ( λ ) d λ ] + N e P Δ λ 0 + N s ( λ 2 λ 1 Δ λ 0 ) + N r } .
R ( λ 0 ) = 10 log 10 { T ( λ 0 ) [ P A N s A + N s B + N e / T ( λ 0 ) ] P C } = T ¯ ( λ 0 ) 10 log 10 [ A N s P A + N s P B + N e P T ( λ 0 ) ] + 10 log 10 ( C )
A = 10 ( 10 m Δ λ 0 / 20 10 m Δ λ 0 / 20 ) m ln 10 ,
B = 10 ( 10 m λ 1 / 10 10 m λ 2 / 10 ) m ln 10 10 m λ 0 / 10 ,
C = Δ λ 0 + N s ( λ 2 λ 1 Δ λ 0 ) P + N r P .
D ( λ 0 ) = Δ R p - p S ( λ 0 ) .
R ( λ 0 ) = T ¯ ( λ 0 ) 10 log 10 ( A ) + 10 log 10 ( Δ λ 0 ) .
R ( λ 0 ) = T ¯ ( λ 0 ) 10 log 10 ( A N s P A + N s P B ) + 10 log 10 ( C ) ,
S ( λ 0 ) = m N s B / P A N s A / P + N s B / P m .
N s B / P A N s A / P + N s B / P m
N s B / P A N s A / P + N s B / P m
S ( λ 0 ) = m 1 A N s P A + N s P B + N e P T ( λ 0 ) ( N s P B + N e P 10 T ¯ ( λ 0 ) 10 ) m .
1 A N s P A + N s P B + N e P T ( λ 0 ) ( N s P B + N e P 10 T ¯ ( λ 0 ) 10 ) m
1 A N s P A + N s P B + N e P T ( λ 0 ) ( N s P B + N e P 10 T ¯ ( λ 0 ) 10 ) m
I λ 0 ( λ ) = { P exp [ 4 ln 2 ( λ λ 0 Δ λ 0 ) 2 ] | λ λ 0 | Ω λ 1 λ λ 2 N s | λ λ 0 | > Ω λ 1 λ λ 2 ,
exp [ 4 ln 2 ( Ω Δ λ 0 ) 2 ] = N s P .

Metrics