Abstract

A first demonstration of Faraday modulation spectrometry (FAMOS) of nitric oxide (NO) addressing its strong electronic X2Π(ν=0)A2Σ+(ν=0) band is presented. The instrumentation was constructed around a fully diode-laser-based laser system producing mW powers of ultraviolet light targeting the overlapping Q22(21/2) and R12Q(21/2) transitions at 226.6nm. The work verifies a new two-transition model of FAMOS addressing the electronic transitions in NO given in an accompanying work. Although the experimental instrumentation could address neither the parameter space of the theory nor the optimum conditions, the line shapes and the pressure dependence could be verified under low-field conditions. NO could be detected down to a partial pressure of 13µTorr, roughly corresponding to 10ppb·m for an atmospheric pressure sample, which demonstrates the feasibility of FAMOS for sensitive detection of NO addressing its strong electronic band.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Piver, “Global atmospheric changes,” Environ. Health Perspect. 96, 131–137 (1991).
    [CrossRef] [PubMed]
  2. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.
  3. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).
  4. M. Radojevic, “Reduction of nitrogen oxides in flue gases,” Environ. Pollut. 102, 685–689 (1998).
    [CrossRef]
  5. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002).
    [CrossRef]
  6. L. J. Ignarro, “Nitric oxide—a novel signal transduction mechanism for transcellular communication,” Hypertension 16, 477–483 (1990).
    [PubMed]
  7. C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001).
    [CrossRef]
  8. L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
    [CrossRef] [PubMed]
  9. B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
    [CrossRef]
  10. L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
    [CrossRef] [PubMed]
  11. C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009).
    [CrossRef] [PubMed]
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  13. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
    [CrossRef]
  14. A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard, ed. (Blackwell, 2006), 72–146.
    [CrossRef]
  15. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef] [PubMed]
  16. D. T. Cassidy and J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
    [CrossRef] [PubMed]
  17. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]
  18. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  19. P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
    [CrossRef]
  20. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
    [CrossRef]
  21. M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996).
    [CrossRef]
  22. M. G. Allen, K. L. Carleton, S. J. Davis, and W. J. Kessle, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
    [CrossRef] [PubMed]
  23. K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1–108 (2004).
    [CrossRef]
  24. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
    [CrossRef]
  25. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
    [CrossRef]
  26. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).
  27. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
    [CrossRef]
  28. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294–3297(1997).
    [CrossRef] [PubMed]
  29. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  30. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
    [CrossRef]
  31. J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).
  32. M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
    [CrossRef]
  33. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
    [CrossRef]
  34. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998).
    [CrossRef]
  35. S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
    [CrossRef]
  36. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
    [CrossRef]
  37. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).
  38. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
    [CrossRef]
  39. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
    [CrossRef]
  40. A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.
  41. Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
    [CrossRef]
  42. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
    [CrossRef] [PubMed]
  43. R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
    [CrossRef]
  44. C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
    [CrossRef]
  45. C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
    [CrossRef]
  46. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
    [CrossRef]
  47. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
    [CrossRef]
  48. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
    [CrossRef]
  49. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31, 823–825 (2006).
    [CrossRef] [PubMed]
  50. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
    [CrossRef]
  51. D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
    [CrossRef] [PubMed]
  52. M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
    [CrossRef]
  53. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
    [CrossRef] [PubMed]
  54. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
    [CrossRef]
  55. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
    [CrossRef]
  56. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb•m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24, 2294–2306(2007).
    [CrossRef]
  57. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
    [CrossRef]
  58. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
    [CrossRef] [PubMed]
  59. W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978).
    [CrossRef]
  60. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  61. W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
    [CrossRef]
  62. A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
    [CrossRef]
  63. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
    [CrossRef] [PubMed]
  64. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
    [CrossRef]
  65. C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
    [PubMed]
  66. H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
    [CrossRef]
  67. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).
  68. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
    [CrossRef]
  69. R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.
  70. T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
    [CrossRef] [PubMed]
  71. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
    [CrossRef] [PubMed]
  72. H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
    [CrossRef]
  73. P. Kluczynski and S. Lundqvist, Siemens AB, IIA SLA R&D, Box 14153, SE-400 20 Göteborg, Sweden, and J. Westberg and O. Axner, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, are preparing a manuscript to be called "Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm."
  74. The FAMOS technique also has appeared under a few other names throughout the years, e.g., magnetic rotation spectroscopy (MRS) , Zeeman modulation spectroscopy (ZMS) , and, most recently, Faraday rotation spectroscopy (FRS) . Originally, however, MRS referred to a technique in which a static field was used to study both magnetic circular birefringence and dichroism .
  75. K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999).
    [CrossRef]
  76. K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999).
    [CrossRef]
  77. K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
    [CrossRef]
  78. K. Takazawa, “Laser-induced fluorescence excitation spectra due to the B2Π(ν″=0)−X2Π(ν′=0) transition of NO in magnetic fields up to 10T,” J. Mol. Spectrosc. 223, 120–124(2004).
    [CrossRef]
  79. D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. I,” J. Chem. Phys. 46, 4525–4529(1967).
    [CrossRef]
  80. D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. II,” J. Chem. Phys. 50, 5018–5026(1969).
    [CrossRef]
  81. L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
    [CrossRef] [PubMed]
  82. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, 1950).
  83. As a consequence of a weak coupling between the rotation of the nuclei and the orbital angular momentum of the electron, each lower state is additionally split into two states with opposite symmetry (+ and −, respectively) by a so-called Λ doubling. Since this splitting is smaller than the spin-splitting as well as the separation between consecutive rotational levels, and transitions are allowed only between states of dissimilar symmetry, this splitting does not give rise to any additional transitions; it can therefore be seen as a perturbation that only shifts the transitions slightly in frequency.
  84. N is the quantum number that corresponds to the rotational energy of a state that lacks orbital angular momentum (i.e., Λ=0) and adheres to Hund’s case (b), given by BN(N+1) and associated with the operator (J−S)2, where J and S are the operators for the total angular momentum and the electronic spin, respectively. Although not formally correct, N can, for convenience, be associated with the rotation of the nuclei.
  85. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
    [CrossRef]
  86. The six branches from the Π1/22 state are P11(J″), Q11(J″), R11(J″) (for which ΔN=ΔJ), and P21Q(J″), Q21R(J″), and R21S(J″) (for which ΔN=ΔJ+1), whereas those from the Π3/22 state are P22(J″), Q22(J″), R22(J″) (for which ΔN=ΔJ), and P12O(J″), Q12P(J″), and R12Q(J″) (for which ΔN=ΔJ−1).
  87. Here,we have utilized the same nomenclature as in Ref. , i.e., a tilde sign indicates that the entity is given in units of inverse centimeters, whereas an overbar shows that the entity is dimensionless. The superscript D indicates that it is normalized with respect to δν˜D/ln⁡2.
  88. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
    [CrossRef]
  89. A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  90. R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
    [CrossRef]
  91. A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
    [CrossRef]
  92. M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
    [CrossRef]
  93. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  94. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
    [CrossRef]
  95. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
    [CrossRef]
  96. L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
    [CrossRef]
  97. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
    [CrossRef]
  98. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
    [CrossRef]
  99. S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
    [CrossRef]
  100. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
    [CrossRef]
  101. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
    [CrossRef] [PubMed]
  102. C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
    [CrossRef]

2010 (2)

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

2009 (6)

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009).
[CrossRef] [PubMed]

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

2008 (3)

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

2007 (2)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb•m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24, 2294–2306(2007).
[CrossRef]

2006 (7)

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31, 823–825 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
[CrossRef]

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

2005 (4)

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

2004 (7)

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1–108 (2004).
[CrossRef]

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

K. Takazawa, “Laser-induced fluorescence excitation spectra due to the B2Π(ν″=0)−X2Π(ν′=0) transition of NO in magnetic fields up to 10T,” J. Mol. Spectrosc. 223, 120–124(2004).
[CrossRef]

2003 (5)

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
[CrossRef] [PubMed]

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

2002 (7)

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002).
[CrossRef]

L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
[CrossRef] [PubMed]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
[CrossRef]

2001 (5)

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001).
[CrossRef]

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

2000 (2)

K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
[CrossRef]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

1999 (7)

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999).
[CrossRef]

K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999).
[CrossRef]

1998 (6)

M. Radojevic, “Reduction of nitrogen oxides in flue gases,” Environ. Pollut. 102, 685–689 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997 (3)

1996 (3)

M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
[CrossRef] [PubMed]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

1995 (1)

1993 (1)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1992 (2)

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

1991 (1)

W. T. Piver, “Global atmospheric changes,” Environ. Health Perspect. 96, 131–137 (1991).
[CrossRef] [PubMed]

1990 (1)

L. J. Ignarro, “Nitric oxide—a novel signal transduction mechanism for transcellular communication,” Hypertension 16, 477–483 (1990).
[PubMed]

1986 (1)

L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

1983 (1)

M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
[CrossRef]

1982 (3)

1981 (1)

A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

1980 (3)

R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

1978 (1)

W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978).
[CrossRef]

1972 (1)

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

1969 (1)

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. II,” J. Chem. Phys. 50, 5018–5026(1969).
[CrossRef]

1967 (2)

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. I,” J. Chem. Phys. 46, 4525–4529(1967).
[CrossRef]

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Abe, H.

K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
[CrossRef]

K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999).
[CrossRef]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999).
[CrossRef]

Allen, M. G.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

M. G. Allen, K. L. Carleton, S. J. Davis, and W. J. Kessle, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

Anderson, T. N.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Atwater, J. W.

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002).
[CrossRef]

Aust, O.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Axner, O.

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb•m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24, 2294–2306(2007).
[CrossRef]

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Baillargeon, J. N.

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

Bakhirkin, Y. A.

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

Barbe, A.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Baren, R. E.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Barron-Jimenez, R.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Barton, P. K.

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002).
[CrossRef]

Benner, D. C.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Berezin, A. G.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
[CrossRef]

Bertaux, J. L.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Beyer, T.

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Billiar, T. R.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Blake, T. A.

Blaser, S.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Bohle, W.

A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
[CrossRef]

Bouba, O.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

Braun, T.

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Bronner, N.

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Bronner, W.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

Brouzos, P.

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

Brown, A. M.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Brown, L. R.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capasso, F.

Carleer, M. R.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Carleton, K. L.

Carter, C. D.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Casa, G.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

Cassidy, D. T.

Castrillo, A.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

Caton, J. A.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Chackerian, C.

Chance, K.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chang, A. Y.

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Chase, R. E.

Chassefiere, E.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Cho, A. Y.

Chou, M.-S.

M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
[CrossRef]

Claveau, C.

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

Clemitshaw, K. C.

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1–108 (2004).
[CrossRef]

Clerbaux, C.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Corsi, C.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Cowles, L. M.

L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Cristescu, S. M.

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

D’Amato, F.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Dana, V.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Davis, S. J.

De Rosa, M.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Dean, A. M.

M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
[CrossRef]

Devi, V. M.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Dion, C. M.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

Dirosa, M. D.

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Doty, J.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

Durry, G.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Ebert, V.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ershov, O. V.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
[CrossRef]

Faist, J.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

Fasci, E.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

Fayt, A.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Fisher, B. T.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

Flaud, J. M.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Fleming, J. W.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

Freedman, R.

R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

Fried, A.

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard, ed. (Blackwell, 2006), 72–146.
[CrossRef]

Frischat, G. H.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Fritsch, T.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

Fuchs, F.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Gäbler, R.

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

Galliger, S. J.

L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
[CrossRef] [PubMed]

Gamache, R. R.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ganser, H.

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Geller, D. A.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Gianfrani, L.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

Giovannini, M.

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

Glenn, D. E.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Gmachl, C.

Goldman, A.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

Halmer, D.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

Hancock, G.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Hanna, S. F.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Harren, F. J. M.

Hartman, J. S.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998).
[CrossRef]

Harward, C. N.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Heide, G.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Heinrich, K.

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

Henry, A.

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Hering, P.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Herndon, S. C.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Herrmann, W.

W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, 1950).

Hinz, A.

A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
[CrossRef]

Horstjann, M.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Hou, Y. C.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).

Hurtmans, D.

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Hutchinson, A. L.

Hvozdara, L.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

Ignarro, L. J.

C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009).
[CrossRef] [PubMed]

L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
[CrossRef] [PubMed]

C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001).
[CrossRef]

L. J. Ignarro, “Nitric oxide—a novel signal transduction mechanism for transcellular communication,” Hypertension 16, 477–483 (1990).
[PubMed]

Jacquemart, D.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Janczuk, A.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Jimenez, J. L.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Jucks, K. W.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kaldor, A.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Kelly, J. F.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998).
[CrossRef]

Kelm, M.

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

Kessle, W. J.

Kessler, W. J.

M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

Khorsandi, A.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Kim, Y. M.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Kleinbongard, P.

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

Kluczynski, P.

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

Kohler, K.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Kolb, C. E.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Kolb-Bachofen, V.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Koplow, M. D.

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Korablev, O.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Kosterev, A. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.

Kroncke, K. D.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Lafferty, W. J.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Lambrecht, A.

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Lathdavong, L.

Laurendeau, N. M.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Le Barbu, T.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Lehmann, J.

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

Lindberg, Å M.

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Loscalzo, J.

L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
[CrossRef] [PubMed]

Lowy, R. J.

L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
[CrossRef] [PubMed]

Lucht, R. P.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Lundqvist, S.

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Mahotka, C.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Maki, A. G.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Malinovsky, A. L.

Mandin, J. Y.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mann, C.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Margottin-Maclou, M.

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Massie, S. T.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
[CrossRef]

McGovern, R. M.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

McKinney, L. C.

L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
[CrossRef] [PubMed]

McManus, J. B.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

McRae, G. J.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Menzel, L.

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Modugno, G.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Moeskops, B. W. M.

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Muller, A.

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

Murtz, M.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Nadezhdinskii, A. I.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
[CrossRef]

Napoli, C.

C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009).
[CrossRef] [PubMed]

L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
[CrossRef] [PubMed]

C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001).
[CrossRef]

Nelson, D. D.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Newnham, D. A.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Nicholls, R. W.

R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

O’Keefe, A.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Oh, D. B.

Olson, W. B.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Onana, M. B.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

Parrish, M. E.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Perrin, A.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Peverall, R.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Pfeiffer, J.

A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
[CrossRef]

Piper, L. G.

L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Piver, W. T.

W. T. Piver, “Global atmospheric changes,” Environ. Health Perspect. 96, 131–137 (1991).
[CrossRef] [PubMed]

Podolske, J. R.

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Quan, S.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Radojevic, M.

M. Radojevic, “Reduction of nitrogen oxides in flue gases,” Environ. Pollut. 102, 685–689 (1998).
[CrossRef]

Rassaf, T.

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

Rautian, S. G.

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Reid, J.

Reisel, J. R.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Remillard, J. T.

Richert, J. F.

Richter, D.

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard, ed. (Blackwell, 2006), 72–146.
[CrossRef]

Rinsland, C. P.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ritchie, G. A. D.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Robinson, D. W.

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. II,” J. Chem. Phys. 50, 5018–5026(1969).
[CrossRef]

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. I,” J. Chem. Phys. 46, 4525–4529(1967).
[CrossRef]

Rohrbeck, W.

W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Roller, C.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.

Rosen, D. I.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Rothman, L. S.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sabana,

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

Sabana, H.

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

Schade, W.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Schmidt, S. E.

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Schnorr, O.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Schroeder, J.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schroeder, P.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

Shafer, K. H.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Shao, J.

Shapiro, R. A.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Sharpe, S. W.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998).
[CrossRef]

Shi, Q.

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Shorter, J. H.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

Sies, H.

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Silva, M. L.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Simeckova, M.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

Sivco, D. L.

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Smith, K. M.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Snels, M.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Sobelman, I. I.

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Sonnenfroh, D. M.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

Stanton, A. C.

Stern, D.

M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
[CrossRef]

Suschek, C. V.

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Takazawa, K.

K. Takazawa, “Laser-induced fluorescence excitation spectra due to the B2Π(ν″=0)−X2Π(ν′=0) transition of NO in magnetic fields up to 10T,” J. Mol. Spectrosc. 223, 120–124(2004).
[CrossRef]

K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
[CrossRef]

K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999).
[CrossRef]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999).
[CrossRef]

Tang, K.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Taylor, B. S.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Thavixay, P.

Timmermann, A.

A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

Toth, R. A.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Urban, W.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
[CrossRef]

W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978).
[CrossRef]

Valentin, A.

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

van Helden, J. H.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

Varanasi, P.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Vinogradov, I.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Wada, H.

K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
[CrossRef]

Wagner, J.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

Wagner, S.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

Walker, R. J.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Wallenstein, R.

A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Walther, T.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

Wang, P. G.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).

Wang, Q.

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Weber, W. H.

Wehr, R.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Westberg, J.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

Willer, U.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Williams, R. M.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Wondraczek, L.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Wysocki, G.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
[CrossRef]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

Yang, Q.

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

Yang, Q. K.

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Yarekha, D. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

Yoshino, K.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zahniser, M. S.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Adv. Space Res. (1)

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

AIAA J. (1)

M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

Anal. Chem. (1)

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Appl. Opt. (10)

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

D. T. Cassidy and J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294–3297(1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

M. G. Allen, K. L. Carleton, S. J. Davis, and W. J. Kessle, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010).
[CrossRef] [PubMed]

Appl. Phys. (2)

W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978).
[CrossRef]

W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Appl. Phys. B (15)

H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004).
[CrossRef]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006).
[CrossRef]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002).
[CrossRef]

H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006).
[CrossRef]

Appl. Phys. Lett. (1)

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Appl. Spectrosc. (1)

Arch. Pharm. Res. (1)

C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009).
[CrossRef] [PubMed]

Arch. Surg. (Chicago) (1)

B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000).
[CrossRef]

Circ. Res. (1)

L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002).
[CrossRef] [PubMed]

Crit. Rev. Environ. Sci. Technol. (1)

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1–108 (2004).
[CrossRef]

Curr. Pharmaceut. Des. (1)

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).

Environ. Health Perspect. (1)

W. T. Piver, “Global atmospheric changes,” Environ. Health Perspect. 96, 131–137 (1991).
[CrossRef] [PubMed]

Environ. Pollut. (1)

M. Radojevic, “Reduction of nitrogen oxides in flue gases,” Environ. Pollut. 102, 685–689 (1998).
[CrossRef]

Environ. Sci. Technol. (1)

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

FASEB J. (1)

C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003).
[PubMed]

Glass Sci. Technol. (1)

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).

Hypertension (1)

L. J. Ignarro, “Nitric oxide—a novel signal transduction mechanism for transcellular communication,” Hypertension 16, 477–483 (1990).
[PubMed]

J. Air Waste Manage. Assoc. (1)

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

J. Biomed. Opt. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (8)

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999).
[CrossRef]

K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999).
[CrossRef]

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. I,” J. Chem. Phys. 46, 4525–4529(1967).
[CrossRef]

D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. II,” J. Chem. Phys. 50, 5018–5026(1969).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef] [PubMed]

M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983).
[CrossRef]

L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

J. Environ. Eng. (1)

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002).
[CrossRef]

J. Mol. Spectrosc. (2)

K. Takazawa, “Laser-induced fluorescence excitation spectra due to the B2Π(ν″=0)−X2Π(ν′=0) transition of NO in magnetic fields up to 10T,” J. Mol. Spectrosc. 223, 120–124(2004).
[CrossRef]

R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (8)

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
[CrossRef]

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Mol. Phys. (2)

A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982).
[CrossRef]

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Nitric Oxide (2)

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).

T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008).
[CrossRef] [PubMed]

NO (1)

C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001).
[CrossRef]

Opt. Commun. (2)

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (2)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

Proc. Combust. Inst. (1)

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004).
[CrossRef]

Science (1)

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Spectrochim. Acta A (1)

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004).
[CrossRef]

Spectrochim. Acta B (1)

P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
[CrossRef]

TM. Tech. Mess. (1)

C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005).
[CrossRef]

Virus Res. (1)

L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003).
[CrossRef] [PubMed]

Other (11)

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard, ed. (Blackwell, 2006), 72–146.
[CrossRef]

A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.

P. Kluczynski and S. Lundqvist, Siemens AB, IIA SLA R&D, Box 14153, SE-400 20 Göteborg, Sweden, and J. Westberg and O. Axner, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, are preparing a manuscript to be called "Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm."

The FAMOS technique also has appeared under a few other names throughout the years, e.g., magnetic rotation spectroscopy (MRS) , Zeeman modulation spectroscopy (ZMS) , and, most recently, Faraday rotation spectroscopy (FRS) . Originally, however, MRS referred to a technique in which a static field was used to study both magnetic circular birefringence and dichroism .

The six branches from the Π1/22 state are P11(J″), Q11(J″), R11(J″) (for which ΔN=ΔJ), and P21Q(J″), Q21R(J″), and R21S(J″) (for which ΔN=ΔJ+1), whereas those from the Π3/22 state are P22(J″), Q22(J″), R22(J″) (for which ΔN=ΔJ), and P12O(J″), Q12P(J″), and R12Q(J″) (for which ΔN=ΔJ−1).

Here,we have utilized the same nomenclature as in Ref. , i.e., a tilde sign indicates that the entity is given in units of inverse centimeters, whereas an overbar shows that the entity is dimensionless. The superscript D indicates that it is normalized with respect to δν˜D/ln⁡2.

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, 1950).

As a consequence of a weak coupling between the rotation of the nuclei and the orbital angular momentum of the electron, each lower state is additionally split into two states with opposite symmetry (+ and −, respectively) by a so-called Λ doubling. Since this splitting is smaller than the spin-splitting as well as the separation between consecutive rotational levels, and transitions are allowed only between states of dissimilar symmetry, this splitting does not give rise to any additional transitions; it can therefore be seen as a perturbation that only shifts the transitions slightly in frequency.

N is the quantum number that corresponds to the rotational energy of a state that lacks orbital angular momentum (i.e., Λ=0) and adheres to Hund’s case (b), given by BN(N+1) and associated with the operator (J−S)2, where J and S are the operators for the total angular momentum and the electronic spin, respectively. Although not formally correct, N can, for convenience, be associated with the rotation of the nuclei.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the energy level structure of two specific vibrational states of the electronic X 2 Π and A 2 Σ + states of NO. The Π 2 ground state is first split into two states because of spin-splitting (denoted by Π 1 / 2 2 and Π 3 / 2 2 ). Each such state is then split into various rotational states according to its total angular momentum, J. Each rotational state is subsequently split into two with opposite parity because of Λ doubling. The upper Σ 2 state is first split in various rotational states according to the quantum number N (which, for simplicity, can be associated with the rotation of the nuclei). Each rotational state is then split into two (denoted by F 1 and F 2 ) because of a coupling between the rotation of the nuclei and the electronic spin, sometimes referred to as ρ-type doubling. A Q 22 ( J ) and a R 12 Q ( J ) transition, which correspond to the types of transitions induced in this work, are specifically marked. The two types of lines correspond to transitions for which Δ N = Δ J = 0 (for the former) and Δ N = 0 and Δ J = + 1 (for the latter), respectively. They originate from a common Π 3 / 2 2 ( J ) state (for which N = J + 1 / 2 ), but they couple to dissimilar excited states, Σ 2 ( F 2 , N = N ) (for which J = N 1 / 2 = N 1 / 2 = J ), and Σ 2 ( F 1 , N = N ) (for which J = N + 1 / 2 = N + 1 / 2 = J + 1 ), respectively. Since NO has a very small (or no) ρ-type doubling, these two transitions are strongly (often considered fully) overlapping.

Fig. 2
Fig. 2

Panel (a): Integrated line strength for the various transitions in the X 2 Π ( ν = 0 ) A 2 Σ + ( ν = 0 ) band of NO. Panel (b): Calculated Doppler broadened absorption spectrum in the 226.55 226.61 nm range from 0.01 atm of a gas mixture with 300 ppm NO in N 2 . The temperature was assumed to be 296 K , whereas the (FWHM) Doppler broadening was assumed to be 0.099 cm 1 (which corresponds to 3.0 GHz ). The targeted lines are those at 226.577 nm marked with an asterisk.

Fig. 3
Fig. 3

Schematic illustration of the FAMOS instrumentation: ECDL, external-cavity diode laser; OI1 and OI2, optical isolators; BS, beam splitters; M, mirrors; TA, tapered amplifier; L, lenses; FDC1 and FDC2, frequency-doubling cavities; D1–D5, photo detectors; PZT1 and PZT2, piezoelectric transducers; KNbO 3 , potassium niobate (frequency-doubling crystal); BBO, β-barium borate (frequency-doubling crystal); LIA, lock-in amplifier; PA, power amplifier; FG, function generator; WM, wavelength meter.

Fig. 4
Fig. 4

The upper parts of the six panels, (a)–(f), display, by the solid curves, measured FAMOS spectra from 4.2, 20, 40, 60, 90, and 150 Torr of the 100 ppm NO, respectively. The dashed curves represent fits of Eq. (1). The lower parts of each panel display the corresponding residual.

Fig. 5
Fig. 5

Panel (a): Measured FAMOS spectra of a gas mixture of 100 ppm NO in N 2 for a set of pressures. The various curves represent total pressures of 0, 0.5, 1, 2, 4.2, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 118, 128, 150, 200, and 250 Torr , respectively. Each spectrum corresponds to an average of 10 measurements, which have been corrected for their background. Panel (b): Simulations of the FAMOS signal from Eq. (1) for a magnetic field of 130 G and the same set of pressures as in panel (a). The x axes: detuning measured from the unshifted center frequency of the transition (i.e. under Doppler limited conditions). The y axes: arbitrary scale.

Fig. 6
Fig. 6

Peak values of the FAMOS signal as a function of total pressure from a gas mixture of 100 ppm NO in N 2 . Panel (a): experimental data. Panel (b): simulations. Data is taken from Fig. 5, thus corresponding to a magnetic field amplitude of 130 G .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S Π , Σ F , E ( Δ ν ¯ Π , Σ D , 0 ) = S Π , Σ F , E , 0 , atm c NO p tot p 0 χ ¯ F , 2 ( Δ ν ¯ Π , Σ D , 0 , ν ¯ Π , Σ a , D , δ ν ¯ L D ) ,
χ ¯ F , 2 ( Δ ν ¯ Π , Σ D , 0 , ν ¯ Π , Σ a , D , δ ν ¯ L D ) = 2 χ ¯ 1 disp , even ( Δ ν ¯ Π , Σ D , 0 , ν ¯ Π , M J , Σ , 1 / 2 a , D , δ ν ¯ L D ) ,
χ ¯ 1 disp , even ( Δ ν ¯ Π , Σ D , 0 , ν ¯ Π , M J , Σ , M S a , D , δ ν ¯ L D ) = 2 τ 0 τ χ ¯ disp [ Δ ν ¯ Π , M J , Σ , M S D ( t ) , δ ν ¯ L D ] cos ( ω t ) d t ,
Δ ν ¯ Π , M J , Σ , M S D ( t ) = Δ ν ¯ Π , Σ D , 0 ν ¯ Π , M J , Σ , M S a , D cos ( ω t ) ,
S Π , Σ F , E , 0 , atm = η S Π , Σ N NO L χ ^ 0 Δ S ¯ Π , Σ ( 1 / 2 ) net 8 sin ( 2 φ ) I 0 ,

Metrics