Abstract

A simple fiber-optic sensor based on Fabry–Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry–Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Daimon and A. Masumura, “High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326nm,” Appl. Opt. 41, 5275–5281 (2002).
    [CrossRef] [PubMed]
  2. J. H. Burnett, R. Gupta, and U. Griesmann, “Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157nm,” Appl. Opt. 41, 2508–2513(2002).
    [CrossRef] [PubMed]
  3. A. J. Werner, “Methods in high precision refractometry of optical glasses,” Appl. Opt. 7, 837–844 (1968).
    [CrossRef] [PubMed]
  4. H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).
  5. R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
    [CrossRef]
  6. V. Y. Demchuk, “Measuring the refractive indices of optical glass by means of automatic goniometer-spectrometers based on a ring laser,” J. Opt. Technol. 73, 617–621 (2006).
    [CrossRef]
  7. A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28, 2112–2114 (2003).
    [CrossRef] [PubMed]
  8. Y.-L. Yeh, “Simultaneous measurement of refractive index and thickness of birefringent wave plates,” Appl. Opt. 47, 1457–1464 (2008).
    [CrossRef] [PubMed]
  9. T. Dennis, E. M. Gill, and S. L. Gilbert, “Interferometric measurement of refractive-index change in photosensitive glass,” Appl. Opt. 40, 1663–1667 (2001).
    [CrossRef]
  10. Y. Hori, A. Hirai, K. Minoshima, and H. Matsumoto, “High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass,” Appl. Opt. 48, 2045–2050 (2009).
    [CrossRef] [PubMed]
  11. B. Santić, D. Gracin, and K. Juraić, “Measurement method for the refractive index of thick solid and liquid layers,” Appl. Opt. 48, 4430–4436 (2009).
    [CrossRef] [PubMed]
  12. B. Santić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518, 3619–3624 (2010).
    [CrossRef]
  13. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature independent measurement of refractive index,” Opt. Express 16, 2252–2263 (2008).
    [CrossRef] [PubMed]
  14. C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
    [CrossRef]
  15. E.D.Palik, ed., Handbook of Optical Constants of Solids(Elsevier, 1985), p. 760.

2010 (1)

B. Santić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518, 3619–3624 (2010).
[CrossRef]

2009 (2)

2008 (2)

2006 (1)

2005 (1)

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

2004 (1)

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

2003 (1)

2002 (2)

2001 (1)

1968 (1)

Burnett, J. H.

Caseri, W. R.

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

Chiang, K. S.

Daimon, M.

Demchuk, V. Y.

Dennis, T.

Gilbert, S. L.

Gill, E. M.

Gracin, D.

Griesmann, U.

Gupta, R.

Halter, M.

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

Hirai, A.

Hori, Y.

Juraic, K.

Kim, C.-B.

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Liao, X.

Liu, W. J.

Masumura, A.

Matsumoto, H.

Minoshima, K.

Nussbaumer, R. J.

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Santic, B.

B. Santić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518, 3619–3624 (2010).
[CrossRef]

B. Santić, D. Gracin, and K. Juraić, “Measurement method for the refractive index of thick solid and liquid layers,” Appl. Opt. 48, 4430–4436 (2009).
[CrossRef] [PubMed]

Smith, P.

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

Su, C. B.

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Tervoort, T.

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).

Werner, A. J.

Yeh, Y.-L.

Appl. Opt. (7)

J. Mater. Sci. (1)

R. J. Nussbaumer, M. Halter, T. Tervoort, W. R. Caseri, and P. Smith, “A simple method for the determination of refractive indices of (rough) transparent solids,” J. Mater. Sci. 40, 575–582 (2005).
[CrossRef]

J. Opt. Technol. (1)

Meas. Sci. Technol. (1)

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Thin Solid Films (1)

B. Santić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518, 3619–3624 (2010).
[CrossRef]

Other (2)

H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).

E.D.Palik, ed., Handbook of Optical Constants of Solids(Elsevier, 1985), p. 760.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Principle of the sensing head. (b) Field amplitudes at the two reflection surfaces.

Fig. 2
Fig. 2

(a) Structure of the special design sensing head. (b) Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Interference spectrum formed by the F–P cavity with the calibration sample of Si O 2 .

Fig. 4
Fig. 4

Reflection spectra of the sensor for measured samples of BK7, SF10, and SF11, respectively.

Fig. 5
Fig. 5

Theoretical variation of the fringe contrast versus RI and experimental fringe contrasts of the measured samples.

Fig. 6
Fig. 6

Results of the refractive index measurements of SF11 for 20 times.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R 1 = ( n f n air ) 2 / ( n f + n air ) 2 , R 2 = ( n air n ) 2 / ( n air + n ) 2 .
E r R 1 E i + ( 1 A 1 ) ( 1 R 1 ) ( 1 α ) R 2 E i e j 2 β L + j π ,
I FP ( λ ) = | E r / E i | 2 = R 1 + ( 1 A 1 ) 2 ( 1 R 1 ) 2 ( 1 α ) 2 R 2 + 2 R 1 R 2 ( 1 A 1 ) ( 1 R 1 ) ( 1 α ) cos ( 4 π L n air / λ π ) .
( 4 π L n air / λ max π ) = 2 m π , ( 4 π L n air / λ min π ) = ( 2 m + 1 ) π ,
I FP ( λ max ) = [ R 1 + R 2 K ( 1 R 1 ) ] 2 , I FP ( λ min ) = [ R 1 R 2 K ( 1 R 1 ) ] 2 ,
C = 10 Log 10 [ I FP ( λ max ) I FP ( λ min ) ] = 20 Log 10 [ R 1 + K ( 1 R 1 ) ( n n air ) / ( n + n air ) R 1 K ( 1 R 1 ) ( n n air ) / ( n + n air ) ] .

Metrics