Abstract

Adsorption of the elongated human plasma fibrinogen (HPF) and globular human serum albumin molecules on a titanium-based surface is monitored by analyzing permittivity and optical roughness of protein-modified surfaces by using a diffractive optical element (DOE)-based sensor and variable angle spectro-ellipsometry (VASE). Both DOE and VASE confirmed that fibrinogen forms a thicker and more packed surface adlayer compared to a more porous and weakly adsorbed albumin adlayer. A linear relation of the permittivity (ε) and dielectric loss (ε) was found for some of the dry titanium-doped hydrocarbon (TDHC) surfaces with excellent HPF adsorption ability. We discuss some aspects of TDHC’s aging and its possible effects on fibrinogen adsorption.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
    [CrossRef] [PubMed]
  2. V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
    [CrossRef]
  3. M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
    [CrossRef] [PubMed]
  4. Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
    [CrossRef] [PubMed]
  5. N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
    [CrossRef]
  6. F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
    [CrossRef]
  7. K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
    [CrossRef] [PubMed]
  8. D. L. Cochran, “A comparison of endosseous dental implant surfaces,” J. Periodontol. Periodontics 70, 1523–1539 (1999).
    [CrossRef]
  9. T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
    [CrossRef]
  10. P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
    [CrossRef] [PubMed]
  11. E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004).
    [CrossRef]
  12. P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
    [CrossRef]
  13. P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
    [CrossRef]
  14. H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
    [CrossRef] [PubMed]
  15. S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999).
    [CrossRef]
  16. A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
    [CrossRef]
  17. M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
    [CrossRef]
  18. I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
    [CrossRef]
  19. J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
    [CrossRef]
  20. X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
    [CrossRef]
  21. C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
    [CrossRef]
  22. W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
    [CrossRef] [PubMed]
  23. K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
    [CrossRef]
  24. A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
    [CrossRef]
  25. A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
    [CrossRef]
  26. R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
    [CrossRef]
  27. R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
    [CrossRef]
  28. T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
    [CrossRef]
  29. T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
    [CrossRef]
  30. J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
    [CrossRef]
  31. R. Silvennoinen, “Sensing of waviness of glossy and rough surface by DOE sensor,” Proc. SPIE 7388, 73880N (2009).
    [CrossRef]
  32. R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).
  33. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Pergamon, 1963).
  34. R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
    [CrossRef] [PubMed]
  35. S. Donati, “Coupling dynamics in lasers and applications in self-mixing interferometry,” in Summaries of the 2nd International Meeting on Optical Sensing and Artificial Vision(Editorial Department of Saint Petersburg State University of Information Technologies, Mechanics and Optics, 2008), p. 67.
  36. O. V. Angelsky, and P. P. Maksimyak, “Optical Diagnostics of random phase objects,” Appl. Opt. 29, 2894–2898 (1990).
    [CrossRef] [PubMed]
  37. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities,” Opt. Express 14, 7299–7311 (2006).
    [CrossRef] [PubMed]
  38. R. A. M. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland, 1977).
  39. S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
    [CrossRef]
  40. A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
    [CrossRef] [PubMed]
  41. J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
    [CrossRef]
  42. S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006).
    [CrossRef]
  43. W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
    [CrossRef]
  44. X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
    [CrossRef] [PubMed]

2009

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

R. Silvennoinen, “Sensing of waviness of glossy and rough surface by DOE sensor,” Proc. SPIE 7388, 73880N (2009).
[CrossRef]

A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[CrossRef] [PubMed]

2008

X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
[CrossRef] [PubMed]

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

2007

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

2006

K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
[CrossRef]

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006).
[CrossRef]

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities,” Opt. Express 14, 7299–7311 (2006).
[CrossRef] [PubMed]

2005

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

2004

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004).
[CrossRef]

2003

Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
[CrossRef] [PubMed]

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

2002

S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

2001

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

2000

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

1999

D. L. Cochran, “A comparison of endosseous dental implant surfaces,” J. Periodontol. Periodontics 70, 1523–1539 (1999).
[CrossRef]

T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
[CrossRef]

S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999).
[CrossRef]

1997

H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
[CrossRef] [PubMed]

1996

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

1995

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

1994

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

1990

Akamatsu, M.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

Allen, G. C.

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

Angelsky, O. V.

Anselme, K.

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

Aronsson, B. O.

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

Azzam, R. A. M.

R. A. M. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland, 1977).

Bacakova, L.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Ball, V.

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

Bar-Chaput, S.

S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006).
[CrossRef]

Bashra, N. M.

R. A. M. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland, 1977).

Beckmann, P.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Pergamon, 1963).

Bendavid, A.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Bentaleb, A.

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

Besenbacher, F.

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

Biederman, H.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Biedermana, H.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Bizios, R.

T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
[CrossRef]

Boldyryeva, H.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Boni, P.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Bossert, J.

K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
[CrossRef]

Brandl, W.

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

Brett, P. M.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Buddie, M.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

Cacciafesta, P.

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

Cai, K.

K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
[CrossRef]

Carrot, C.

S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006).
[CrossRef]

Cavaleiro, A.

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Cavaleirob, A.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

Cavin, R.

Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
[CrossRef] [PubMed]

Champion, E.

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

Chen, J. Y.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Chevallier, J.

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

Chirila, V.

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

Choukourov, A.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Choukourova, A.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Cochran, D. L.

D. L. Cochran, “A comparison of endosseous dental implant surfaces,” J. Periodontol. Periodontics 70, 1523–1539 (1999).
[CrossRef]

Coen, M. C.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Cvrcek, L.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Cvrcekd, L.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

Daves, B. A.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

Ding, P. D.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Donati, S.

S. Donati, “Coupling dynamics in lasers and applications in self-mixing interferometry,” in Summaries of the 2nd International Meeting on Optical Sensing and Artificial Vision(Editorial Department of Saint Petersburg State University of Information Technologies, Mechanics and Optics, 2008), p. 67.

Ducker, W. A.

X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
[CrossRef] [PubMed]

Englezos, P.

A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[CrossRef] [PubMed]

Foss, M.

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

Gallet, O.

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

Galli, C.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Garguilio, J. M.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

Gold, J.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Grant, D. M.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

Grinevich, A.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Grinevicha, A.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Gröning, P.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Hallam, K. R.

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

Hanson, S. G.

Harle, J.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Hason, S.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Hatzikiriakos, S. G.

A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[CrossRef] [PubMed]

Hauert, R.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Hemmerle, J.

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

Hemmersam, A. G.

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

Hook, F.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Hubin, A.

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

Humphris, A. D. L.

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

Imamura, K.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

Ionescu, M.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Jada, A.

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

Jandt, K. D.

K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
[CrossRef]

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

Jansoon, E.

E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004).
[CrossRef]

Jones, F. H.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Jones, M. I.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

Juany, N.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Kasemo, B.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Katanaev, V. L.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Kidoaki, S.

S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999).
[CrossRef]

Kietzig, A-M.

A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[CrossRef] [PubMed]

Köck, F. A. M.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

Kurrat, R.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Lausmaa, J.

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

Leng, Y.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Leng, Y. X.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Li, C.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Lisa, V.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Liu, X.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Liu, Z.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Lundstrom, I.

H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
[CrossRef] [PubMed]

Ma, F.

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

Ma, W. J.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Macak, J.

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Maksimyak, A. P.

Maksimyak, P. P.

Marginean, G.

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

Martin, P. J.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Mason, R. S.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Matsuda, T.

S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999).
[CrossRef]

McColl, I. R.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

Mihoc, R.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Miles, M. J.

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

Myller, K.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Nagai, S.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

Nakanishi, K.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

Nee, S-M. F.

S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

Nee, T-W.

S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

Nemanich, R. J.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

Noskova, L.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Novak, R.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Nygren, H.

H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
[CrossRef] [PubMed]

Olsen, I.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Ong, J. L.

Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
[CrossRef] [PubMed]

Parker, K. G.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

Parker, T. L.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

Peiponen, K.

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

Peiponen, K-E.

R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Pihosh, Y.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Polcar, T.

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Polcara, T.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

Prachár, P.

Quinn, A.

X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
[CrossRef] [PubMed]

Ramsden, J. J.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Räsänen, J.

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

Rodahl, M.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

Rouahi, M.

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

Ruys, A. J.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Saitob, N.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Salih, V.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Savolainen, M.

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

Schaaf, P.

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

Schlapbach, L.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Shimomura, M.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

Siegel, R. W.

T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
[CrossRef]

Silvennoinen, M.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Silvennoinen, R.

R. Silvennoinen, “Sensing of waviness of glossy and rough surface by DOE sensor,” Proc. SPIE 7388, 73880N (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Skuciova, M.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

Slavinska, D.

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Spenser, N. D.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Spizzichino, A.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Pergamon, 1963).

Sun, H.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Takaib, O.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

Tengvall, P.

E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004).
[CrossRef]

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
[CrossRef] [PubMed]

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

Textor, M.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Tonetti, M.

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Tuononen, H.

van derKeere, I.

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

Vanek, J.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Vereecken, J.

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

Vetterl, V.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008).
[CrossRef] [PubMed]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Vitu, T.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Voegel, J.-C.

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

Voros, J.

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

Vyskocil, J.

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Vyskocild, J.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

Walivaara, B.

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

Wang, G. J.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Wang, J.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Wang, X.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Warschewski, W.

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

Watkinson, A. C.

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

Webster, T. J.

T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
[CrossRef]

Willaert, R.

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

Wymann, M. P.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Xi, T. F.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Xin, X.-T.

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

Xu, K.-W.

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

Yang, P.

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

Yang, Y.

Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
[CrossRef] [PubMed]

Yu, L.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Zhang, F.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Zhang, J.-M.

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

Zhang, X. H.

X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
[CrossRef] [PubMed]

Zheng, Z.

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Zreiqat, H.

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Adv. Opt. Technol.

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349.
[CrossRef]

Appl. Opt.

Biomater.

T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999).
[CrossRef]

Biomaterials

B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994).
[CrossRef] [PubMed]

N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003).
[CrossRef]

W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007).
[CrossRef] [PubMed]

Bone

P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004).
[CrossRef] [PubMed]

Carbon

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004).
[CrossRef]

Colloids Surf. B

E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004).
[CrossRef]

A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005).
[CrossRef]

M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006).
[CrossRef]

F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002).
[CrossRef]

K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006).
[CrossRef]

X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003).
[CrossRef]

Diam. Relat. Mater.

J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004).
[CrossRef]

J. Appl. Polym. Sci.

S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006).
[CrossRef]

J. Biomed. Mater. Res.

M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000).
[CrossRef] [PubMed]

H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. A.

Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003).
[CrossRef] [PubMed]

A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009).
[CrossRef]

J. Biosci. Bioeng.

K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008).
[CrossRef] [PubMed]

J. Periodontol. Periodontics

D. L. Cochran, “A comparison of endosseous dental implant surfaces,” J. Periodontol. Periodontics 70, 1523–1539 (1999).
[CrossRef]

Langmuir

V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996).
[CrossRef]

S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999).
[CrossRef]

I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008).
[CrossRef]

P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000).
[CrossRef]

A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[CrossRef] [PubMed]

X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008).
[CrossRef] [PubMed]

Opt. Eng.

S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995).
[CrossRef]

Opt. Express

Proc. SPIE

R. Silvennoinen, “Sensing of waviness of glossy and rough surface by DOE sensor,” Proc. SPIE 7388, 73880N (2009).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009).
[CrossRef]

Solid State Sci.

T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009).
[CrossRef]

Surf. Coat. Technol.

T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008).
[CrossRef]

Surf. Interface Anal.

J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003).
[CrossRef]

Surf. Sci.

A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008).
[CrossRef]

P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001).
[CrossRef]

Surf. Sci. Lett.

C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001).
[CrossRef]

Other

R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Pergamon, 1963).

R. A. M. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland, 1977).

S. Donati, “Coupling dynamics in lasers and applications in self-mixing interferometry,” in Summaries of the 2nd International Meeting on Optical Sensing and Artificial Vision(Editorial Department of Saint Petersburg State University of Information Technologies, Mechanics and Optics, 2008), p. 67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometric setup of DOE sensor with sample cuvette compartment for R opt measurements. The lower inset denotes the aperture of the DOE, whereas the upper inset denotes a reconstructed 4 × 4 spot matrix image of the DOE by using nondistorted wavefront.

Fig. 2
Fig. 2

(a) SEM image from a mechanically polished titanium surface. The length of the scale bar is 1 μm . Temporal gloss (G) in GU and optical roughness ( R opt ) in meters of a mechanically polished titanium surface, when the surface, immediately after polishing, is in water, in electrolyte, and in electrolyte with HPF or HSA molecules with concentration of 500 nM . Gloss of (b) HPF and (d) HSA, optical roughness of (c) HPF and (e) HSA.

Fig. 3
Fig. 3

(a) SEM image from a nanostructured T i 0.82 C 0.12 surface. The length of the scale bar is 1 μm . (b) Temporal gloss (G) in GU from a carbon treated titanium surface ( T i 0.82 C 0.12 ), when the surface is in water, in electrolyte, in electrolyte with HPF ( 500 nM ) and in electrolyte with HPF ( 4 μM ). (c) Temporal optical roughness ( R opt ) in meters from the same T i 0.82 C 0.12 surface. Note that the average optical roughness of the nanostructured surface is 55 nm .

Fig. 4
Fig. 4

Extinction coefficient of the electrolyte without (dashed curve) and with HPF molecules ( 5 μM ) (solid curve), whereas the extinction coefficient of water meets the wavelength axis in the ultraviolet range. The numbers shown on the λ axis are in meters.

Fig. 5
Fig. 5

Spectral complex refractive index ( N n κ ) of mechanically polished titanium surfaces modified by HPF (squares) and HSA (circles). Ellipsometric measurements were performed in air after a half-hour of drying to remove the protein-modified surface from the protein solution ( 500 nM concentration), where the spontaneous adsorptions during 15 min proceed. Dotted curves represents the response from the titanium surface in the presence of only background electrolyte. (a) Real part and (b) imaginary part of N n κ for the respective interface layers.

Fig. 6
Fig. 6

Complex effective dielectric constants (dielectric permittivity) for the T i comp surface and four carbon treated titanium surfaces at E λ = 1.959 eV . The markers without (reference surfaces) and with dots denote the two-year time frame between the measurements. For clarity, the standard deviations in permittivity ε and dielectric loss ε directions are indicated by horizontal and vertical lines on each dielectric constant marker without a dot. Parameters for the line are as follows: ε = a ε + b , where a = 1.634 and b = 5.877 .

Fig. 7
Fig. 7

Optical roughness ( R opt ) in meters of the T i comp and four carbon treated titanium surfaces, when R opt of the surface immersed in background electrolyte in the absence of HPF molecules is subtracted from R opt of the same surface immersed in background electrolyte in the presence of HPF molecules. The bar legends 2007 and 2009 denote the two-year time frame between the measurements. The vertical lines denote standard deviations on the bars, where adsorption of HPF molecules on the surface is significant.

Tables (1)

Tables Icon

Table 1 Complex Effective Dielectric Constants (Dielectric Permittivity) ε = ε + i ε at E λ = 1.959 eV and Water Contact Angles (θ in Degrees) with Standard Deviations for the Five Studied Surfaces a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I C = 1 n p k m p k i p k = 1 , j p k = 1 n p k , m p k I i p k , j p k ,
I NC = 1 n SW m SW i SW = 1 , j = SW 1 n SW , m SW I i SW , j SW 1 n p k m p k i p k = 1 , j p k = 1 n p k , m p k I i p k , j p k .

Metrics