Abstract

We demonstrate a high-repetition-rate soliton fiber laser that is based on highly doped anomalously dispersive erbium-doped fiber. By splicing an 11mm single-mode fiber to the erbium-doped fiber, the thermal damage of the butt-coupled saturable Bragg reflector (SBR) is overcome. The laser generates 187fs pulses at a repetition rate of 967MHz with a measured long-term stability of more than 60 h.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  2. S. T. Cundiff, “Metrology—new generation of combs,” Nature 450, 1175–1176 (2007).
    [CrossRef] [PubMed]
  3. J. Kim, M. Park, M. Perrott, and F. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40GHz with higher than 7-ENOB resolution,” Opt. Express 16, 16509–16515 (2008).
    [CrossRef] [PubMed]
  4. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
    [CrossRef] [PubMed]
  5. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54μm with a fundamental repetition frequency reaching 2GHz,” Opt. Express 15, 13155–13166 (2007).
    [CrossRef] [PubMed]
  6. J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.
  7. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
    [CrossRef]
  8. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
    [CrossRef]
  9. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
    [CrossRef]
  10. F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
    [CrossRef]
  11. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18(1995).
    [CrossRef] [PubMed]
  12. D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16, 19221–19231 (2008).
    [CrossRef]
  13. M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.
  14. L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express 13, 3420–3428 (2005).
    [CrossRef] [PubMed]
  15. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13, 53–55(1988).
    [CrossRef] [PubMed]
  16. N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23, 852–854(1998).
    [CrossRef]
  17. S. Cundiff, B. Collings, and W. Knox, “Polarization locking in an isotropic, mode-locked soliton Er/Yb fiber laser,” Opt. Express 1, 12–21 (1997).
    [CrossRef] [PubMed]
  18. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19, 2606–2611(1980).
    [CrossRef] [PubMed]
  19. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
    [CrossRef]

2008 (3)

2007 (2)

2006 (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

2005 (2)

L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express 13, 3420–3428 (2005).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

2001 (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

1998 (2)

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
[CrossRef]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23, 852–854(1998).
[CrossRef]

1997 (1)

1995 (1)

1988 (1)

1980 (1)

1975 (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

Akhmediev, N. N.

Aus der Au, J.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
[CrossRef]

Byun, H.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[CrossRef] [PubMed]

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16, 19221–19231 (2008).
[CrossRef]

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Chao, D.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Chen, J.

Christodoulides, D. N.

Collings, B.

Collings, B. C.

Cundiff, S.

Cundiff, S. T.

S. T. Cundiff, “Metrology—new generation of combs,” Nature 450, 1175–1176 (2007).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23, 852–854(1998).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Ippen, E. P.

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[CrossRef] [PubMed]

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16, 19221–19231 (2008).
[CrossRef]

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Jabronski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Jiang, S.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Joseph, R. I.

Kärtner, F.

Kärtner, F. X.

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16, 19221–19231 (2008).
[CrossRef]

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[CrossRef] [PubMed]

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18(1995).
[CrossRef] [PubMed]

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Keller, U.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18(1995).
[CrossRef] [PubMed]

Kim, J.

Knox, W.

Knox, W. H.

Kolodziejski, L.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Li, H.

Li, L.

Mafi, A.

McFerran, J. J.

Moloney, J. V.

Morrell, M. M.

Morse, J.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Motamedi, A.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Nenadovic, L.

Newbury, N. R.

Park, M.

Paschotta, R.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

Perrott, M.

Petrich, G.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Peyghambarian, N.

Pudo, D.

Qiu, T.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Sander, M. Y.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Schlager, J. B.

Schülzgen, A.

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Shen, H. M.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

Sickler, J.

Sickler, J. W.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Smith, A. M.

Soto-Crespo, J. M.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Swann, W. C.

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Temyanko, V. L.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Yamashita, S.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

IEEE J. Sel. Top. in Quant. Electron. (1)

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. in Quant. Electron. 4, 159–168 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jabronski, and S. Y. Set, “5GHz pulsed fiber Fabry–Perrot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750–752 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

Nature (1)

S. T. Cundiff, “Metrology—new generation of combs,” Nature 450, 1175–1176 (2007).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Proc. SPIE (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (2)

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), paper CTuII1.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kärtner, “Fundamentally mode-locked 3GHz femtosecond erbium fiber laser,” in Ultrafast Phenomena XIV: Proceedings of the 16th International Conference (Italy, 2008), pp. 727–729.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Laser schematic, (b) photograph of the packaged laser. The blue and red wires on the left side of the box are used to measure the temperature inside the package.

Fig. 2
Fig. 2

(a) Schematic diagram of the SBR, (b) measured low-fluence reflectivity of the SBR over 900 to 1700 nm with and without the additional pump-reflective coating (PRC), (c) measured reflectivity of the SBR for various fluences at 1560 nm , and (d) pump–probe traces for three different fluences. TPA, two-photon absorption; Δ R / R , relative reflectivity change.

Fig. 3
Fig. 3

(a) Optical spectrum, (b) interferometric autocorrelation with inferred intensity autocorrelation (white), (c) RF spectrum zoomed around the first harmonic with a resolution bandwidth of 300 Hz , (d) 1 min persistence trace, (e) single sideband (SSB) phase noise and instrument noise floor with integrated timing jitter, and (f) relative intensity noise (RIN) of mode-locked EDF laser, pump diode, and instrument noise floor.

Fig. 4
Fig. 4

Four different configurations to study the thermal damage issue. EDF, Er-doped fiber; SBR, saturable Bragg reflector; and SMF, single-mode fiber. All SBRs include the pump-reflective dielectric coatings deposited on the surface.

Fig. 5
Fig. 5

20 h measurement of the output power for two different fiber cavity configurations.

Fig. 6
Fig. 6

Long-term measurement of (a) output power, (b) temperature inside the package, (c) optical spectrum FWHM width, and (d) repetition rate drift from 967.398 MHz .

Metrics