Abstract

We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFS and MODIS sensors, including aerosol optical thickness (τ), angstrom coefficient (α), and water-leaving radiance (Lw). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity. These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity. From these findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all, 80 distributions (8Rh×10 fine-mode fractions) were created to process the satellite data. We also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of the fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data. The reprocessing of the SeaWiFS data show that, over deep ocean, the average τ865 values retrieved from the new aerosol models was 0.100±0.004, which was closer to the average AERONET value of 0.086±0.066 for τ870 for the eight open-ocean sites used in this study. The average τ865 value from the old models was 0.131±0.005. The comparison of monthly mean aerosol optical thickness retrieved from the SeaWiFS sensor with AERONET data over Bermuda and Wallops Island show very good agreement with one another. In fact, 81% of the data points over Bermuda and 78% of the data points over Wallops Island fall within an uncertainty of ±0.02 in optical thickness. As a part of the reprocessing effort of the SeaWiFS data, we also revised the vicarious calibration gain factors, which resulted in significant improvement in angstrom coefficient (α) retrievals. The average value of α from the new models over Bermuda is 0.841±0.171, which is in good agreement with the AERONET value of 0.891±0.211. The average value of α retrieved using old models is 0.394±0.087, which is significantly lower than the AERONET value.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Ziauddin Ahmad, Bryan A. Franz, Charles R. McClain, Ewa J. Kwiatkowska, Jeremy Werdell, Eric P. Shettle, and Brent N. Holben, "New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher’s note," Appl. Opt. 50, 626-626 (2011)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-50-5-626

References

  • View by:
  • |
  • |
  • |

  1. R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
    [CrossRef]
  2. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR 790214, U. S. Air Force Laboratory, Hanscom Air Force Base, Mass. (1979).
  3. G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, 1991).
  4. C. E. Junge, “Our knowledge on the physico-chemistry of aerosols in the undisturbed marine environment,” J. Geophys. Res. 77, 5183–5200 (1972).
    [CrossRef]
  5. D. Deirmendjian, “Scattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187–196 (1964).
    [CrossRef]
  6. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, 1969).
  7. C. N. Davies, “Size distribution of atmospheric particles,” J. Aerosol Sci. 5, 293–300 (1974).
    [CrossRef]
  8. H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452(1994).
    [CrossRef] [PubMed]
  9. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17081–17106 (1997).
    [CrossRef]
  10. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
    [CrossRef]
  11. World Climate Program, WCP-112, “A preliminary cloudless standard atmosphere for radiation computation,” WMO/TD No. 24, World Meteorological Organization (1986).
  12. L. Schutz, “Long-range transport of desert dust with special emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 515–532(1980).
    [CrossRef]
  13. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” in Advances in Geophysics, H.E.Landsberg and J.V.Miehem, eds. (Academic, 1976), Vol.  19.
    [CrossRef]
  14. A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
    [CrossRef]
  15. M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
    [CrossRef]
  16. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  17. B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
    [CrossRef]
  18. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000).
    [CrossRef]
  19. O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
    [CrossRef]
  20. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
    [CrossRef]
  21. O. Dubovik, “Optimization of numerical inversion in photopolarimetric remote sensing,” in Photopolarimetry in Remote Sensing, G.Videen, Y.Yatskiv, and M.Mishchenko, eds. (Kluwer Academic, 2004), pp. 65–106.
  22. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
    [CrossRef]
  23. A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
    [CrossRef]
  24. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  25. D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
    [CrossRef]
  26. A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
    [CrossRef]
  27. L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
    [CrossRef]
  28. F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
    [CrossRef]
  29. J. Wang and S. T. Martin, “Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms,” J. Geophys. Res. 112, D17203, doi:10.1029/2006JD008078 (2007).
    [CrossRef]
  30. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18, 7521–7527 (2010).
    [CrossRef] [PubMed]
  31. Z. Ahmad and R. S. Fraser, “An iterative radiative transfer code for ocean-atmosphere system,” J. Atmos. Sci. 39, 656–665(1982).
    [CrossRef]
  32. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 465068–5082 (2007).
    [CrossRef] [PubMed]
  33. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12–23 (2006).
    [CrossRef]
  34. M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
    [CrossRef]

2010 (1)

2007 (4)

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 465068–5082 (2007).
[CrossRef] [PubMed]

F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
[CrossRef]

J. Wang and S. T. Martin, “Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms,” J. Geophys. Res. 112, D17203, doi:10.1029/2006JD008078 (2007).
[CrossRef]

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

2006 (2)

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12–23 (2006).
[CrossRef]

2005 (2)

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
[CrossRef]

2004 (1)

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

2003 (1)

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

2002 (2)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

2001 (1)

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

2000 (2)

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

1999 (1)

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

1998 (1)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

1997 (3)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
[CrossRef]

D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
[CrossRef]

1994 (1)

1982 (1)

Z. Ahmad and R. S. Fraser, “An iterative radiative transfer code for ocean-atmosphere system,” J. Atmos. Sci. 39, 656–665(1982).
[CrossRef]

1980 (1)

L. Schutz, “Long-range transport of desert dust with special emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 515–532(1980).
[CrossRef]

1974 (2)

C. N. Davies, “Size distribution of atmospheric particles,” J. Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1972 (1)

C. E. Junge, “Our knowledge on the physico-chemistry of aerosols in the undisturbed marine environment,” J. Geophys. Res. 77, 5183–5200 (1972).
[CrossRef]

1964 (1)

Abuhassan, N.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Ahmad, Z.

Z. Ahmad and R. S. Fraser, “An iterative radiative transfer code for ocean-atmosphere system,” J. Atmos. Sci. 39, 656–665(1982).
[CrossRef]

Antoine, D.

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

Aznay, Q.

F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
[CrossRef]

Bailey, S. W.

Breon, F-M.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Burg, R.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

Cairns, B.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

Chatenet, B.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Clark, D.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

d’Almeida, G. A.

G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, 1991).

Davies, C. N.

C. N. Davies, “Size distribution of atmospheric particles,” J. Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

Deirmendjian, D.

Diner, D. J.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Dubovik, O.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

O. Dubovik, “Optimization of numerical inversion in photopolarimetric remote sensing,” in Photopolarimetry in Remote Sensing, G.Videen, Y.Yatskiv, and M.Mishchenko, eds. (Kluwer Academic, 2004), pp. 65–106.

Eck, T. F.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Fargion, G.

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR 790214, U. S. Air Force Laboratory, Hanscom Air Force Base, Mass. (1979).

Franz, B. A.

Fraser, R. S.

Z. Ahmad and R. S. Fraser, “An iterative radiative transfer code for ocean-atmosphere system,” J. Atmos. Sci. 39, 656–665(1982).
[CrossRef]

Frouin, R.

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Gordon, H. R.

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452(1994).
[CrossRef] [PubMed]

Gross, L.

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

Halthore, R.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Halthore, R. N.

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

Hänel, G.

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” in Advances in Geophysics, H.E.Landsberg and J.V.Miehem, eds. (Academic, 1976), Vol.  19.
[CrossRef]

Hansen, J. E.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Holben, B.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Husar, R. B.

R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Junge, C. E.

C. E. Junge, “Our knowledge on the physico-chemistry of aerosols in the undisturbed marine environment,” J. Geophys. Res. 77, 5183–5200 (1972).
[CrossRef]

Kahn, R.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Karnieli, A.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Kaufman, Y.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y. J.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
[CrossRef]

King, M. D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000).
[CrossRef]

Knobelspiesse, K. D.

M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
[CrossRef]

Koepke, P.

G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, 1991).

Lapyonok, T.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Lavenue, F.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Leon, J-F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Markham, B.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Martin, J. V.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

Martin, S. T.

J. Wang and S. T. Martin, “Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms,” J. Geophys. Res. 112, D17203, doi:10.1029/2006JD008078 (2007).
[CrossRef]

Martonchik, J.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Mattoo, S.

D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
[CrossRef]

McCain, C. R.

M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
[CrossRef]

McClain, C. R.

McCormick, M. P.

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

Mishchenko, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

Morel, A.

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

Munoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Newcomb, W. W.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O’Neill, N. T.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Omar, A. H.

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

Pietras, C.

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Pinker, R. T.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Prospero, J. M.

R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
[CrossRef]

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Roger, J-C.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Santer, R.

F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
[CrossRef]

Schafer, J.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Schutz, L.

L. Schutz, “Long-range transport of desert dust with special emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 515–532(1980).
[CrossRef]

Setzer, A.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Shettle, E. P.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR 790214, U. S. Air Force Laboratory, Hanscom Air Force Base, Mass. (1979).

G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, 1991).

Sinyuk, A.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Slutsker, I.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Smirnov, A.

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Stowe, L. L.

R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
[CrossRef]

Tanre, D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Vande Castle, J.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

vander Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Vermote, E. F.

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Voss, K.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Wang, J.

J. Wang and S. T. Martin, “Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms,” J. Geophys. Res. 112, D17203, doi:10.1029/2006JD008078 (2007).
[CrossRef]

Wang, M.

M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
[CrossRef]

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452(1994).
[CrossRef] [PubMed]

Werdell, P. J.

Winker, D. M.

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

Won, J.

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

Yoon, S.

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

Zagolski, F.

F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
[CrossRef]

Zibordi, G.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

L. Schutz, “Long-range transport of desert dust with special emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 515–532(1980).
[CrossRef]

Appl. Opt. (3)

Int. J. Remote Sens. (1)

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

J. Aerosol Sci. (1)

C. N. Davies, “Size distribution of atmospheric particles,” J. Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

J. Atmos. Sci. (3)

A. Smirnov, B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002).
[CrossRef]

Z. Ahmad and R. S. Fraser, “An iterative radiative transfer code for ocean-atmosphere system,” J. Atmos. Sci. 39, 656–665(1982).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

J. Geophys. Res. (12)

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. vander Zande, J-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619 (2006).
[CrossRef]

D. Tanre, Y. J. Kaufman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997).
[CrossRef]

A. H. Omar, J. Won, D. M. Winker, S. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERONET measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005).
[CrossRef]

F. Zagolski, R. Santer, and Q. Aznay, “A new climatology for atmospheric correction based on aerosol inherent optical properties,” J. Geophys. Res. 112, D14208, doi:10.1029/2006JD007496 (2007).
[CrossRef]

J. Wang and S. T. Martin, “Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms,” J. Geophys. Res. 112, D17203, doi:10.1029/2006JD008078 (2007).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McCain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with ocean color products,” J. Geophys. Res. 110, doi:10.1029/2004JD004950 (2005).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001).
[CrossRef]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000).
[CrossRef]

O. Dubovik, A. Smirnov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000).
[CrossRef]

C. E. Junge, “Our knowledge on the physico-chemistry of aerosols in the undisturbed marine environment,” J. Geophys. Res. 77, 5183–5200 (1972).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

R. B. Husar, J. M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102, 16889–16909(1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martin, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurements requirement,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

L. Gross, R. Frouin, C. Pietras, and G. Fargion, “Non-supervised classification of aerosol mixtures for ocean color remote sensing,” Proc. SPIE 4892, 95–104 (2003).
[CrossRef]

Remote Sens. Environ. (3)

A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107, 90–108, doi:10.1016/j.rse.2006.07.022 (2007).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12–23 (2006).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (6)

O. Dubovik, “Optimization of numerical inversion in photopolarimetric remote sensing,” in Photopolarimetry in Remote Sensing, G.Videen, Y.Yatskiv, and M.Mishchenko, eds. (Kluwer Academic, 2004), pp. 65–106.

World Climate Program, WCP-112, “A preliminary cloudless standard atmosphere for radiation computation,” WMO/TD No. 24, World Meteorological Organization (1986).

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” in Advances in Geophysics, H.E.Landsberg and J.V.Miehem, eds. (Academic, 1976), Vol.  19.
[CrossRef]

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR 790214, U. S. Air Force Laboratory, Hanscom Air Force Base, Mass. (1979).

G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, 1991).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Locations of oceanic and coastal AERONET sites used in the present study.

Fig. 2
Fig. 2

(a) Monthly mean geometric radius of fine-mode aerosols (in volume distribution space) observed over open ocean and CBR. (b)  Same as in (a), but for coarse-mode aerosols. (c)  Monthly mean standard deviation of fine- and coarse-mode aerosols over open ocean and the CBR. (d) Monthly mean fraction (by volume) of the fine-mode distributions over open ocean and the CBR. (e)  Effective radius of aerosols over open ocean and the CBR.

Fig. 3
Fig. 3

(a) Frequency distribution of SSA at 440 nm using all observations in the combined dataset of SERC, Wallops Island, and COVE sites. Only 5% of the data have SSA 0.935 . (b) Monthly mean value of SSA ( ω o ) of all observation, where 0.2 τ 870 0.3 . The dataset did not have observations for the month of January, February, March, April, November, or December that satisfied the above stated optical thickness criteria. (c)  Spectral dependence of SSA ( ω o ) of all CBR data where 0.2 τ 870 0.3 and ω o 0.935 . (d)  Relationship between angstrom coefficient ( α 440 ) and fraction of fine-mode aerosols.

Fig. 4
Fig. 4

(a)  Growth of fine- and coarse-mode aerosol radius with an increase in Rh over the open ocean. The symbols represent the monthly mean radius data and the solid and dashed curves represent the model results (Hänel [13]). (b)  Same as (a), except for CBR. (c)  Change in the standard deviation of fine- and coarse-mode distributions with Rh over the open ocean. The symbols represent the monthly mean standard deviation values and the solid and dashed curves are the least square fit to the data. (d)  Same as (c), except for CBR.

Fig. 5
Fig. 5

(a)  Examples of the new size distributions (Rh80M02 and Rh80M05). Both distributions are normalized to a value of 100 at their respective maxima. (b)  Examples of two SF79 aerosol size distributions. C50 and C80 refer to coastal aerosol distributions for Rh of 50% and 80 % , respectively.

Fig. 6
Fig. 6

(a)  Comparison of spectral dependence of SSA as reported by AERONET for τ 870 0.3 , and as predicted by our model where the fine mode consists of 70% water-soluble and 30% dustlike aerosols. (b)  Same as in (a), except the fine mode consists of 99.5% dustlike aerosols and 0.5% soot aerosols.

Fig. 7
Fig. 7

(a)  Ten-year time series of τ 865 over deep ocean derived from SeaWiFS sensor using new and old aerosol models. (b)  Ten-year time series of normalized water-leaving radiances, L w n , over deep ocean derived from SeaWiFS sensors using new and old aerosol models. (c)  TOA reflectance computed from old (M70) and new (Rh80M06) aerosol models. The input parameters were θ 0 = 30 ° , θ = 42 ° , ϕ = 120 ° , and τ = 0.1 (d)  Same as (c), except that the reflectances for each aerosol model were normalized by their respective value for the 865 nm band.

Fig. 8
Fig. 8

(a) Scatter plot of SeaWiFS versus AERONET monthly mean aerosol optical thickness (τ) over Bermuda. The solid curve is a 1 1 curve and the dotted curves represent ± 0.02 change in τ from the 1 1 curve. Approximately 81% of the data are within the dotted curves. The robust least squares fit equation is τ SeaWiFS = 0.860 τ AERONET + 0.015 , and bias and rms statistics are, respectively, 0.010 and 0.002. (b)  Same as in (a), except that 78% of the data are within the dotted curves. The robust least squares fit equation is τ SeaWiFS = 0.944 τ AERONET 0.005 , and the bias and rms statistics are, respectively, 0.009 and 0.002. (c)  Time series of monthly mean aerosol optical thickness ( τ 865 ) over Bermuda derived from the old and the new models as well as from AERONET sunphotometer. Note that τ values derived from the new models are much closer to AERONET than those derived from the old models. (d)  Same as (c) , except that the data were taken over Wallops Island. (e)  Time series of monthly mean angstrom coefficient ( α 443 ) over Bermuda derived from the old and the new models as well as from the AERONET sunphotometer. Note that α values derived from the new models are much closer to AERONET than those derived from the old models. (f)  Same as (e), except that the data were taken over Wallops Island. The AERONET values are slightly larger than those retrieved from the new models.

Tables (4)

Tables Icon

Table 1 Name and Location of the AERONET Sites and Number of Observations (Daily Averaged) Used for Analysis of Aerosol Size Distribution over Chesapeake Bay and Open Ocean

Tables Icon

Table 2 Average Values of Modal Radii ( r v f , r v c ) , Standard Deviations ( σ f , σ c ) , Effective Radius r eff , and Fine-Mode Fraction f for Fine- and Coarse-Mode Aerosols over Open Ocean and Chesapeake Bay a

Tables Icon

Table 3 Complex Refractive Index Values for Different Constituents of the Fine- and Coarse-Mode Aerosols for SeaWiFS Sensor at Rh = 0 ( S F 79 )

Tables Icon

Table 4 Modal Radii ( r v f , r v c ) , Standard Deviations ( σ f , σ c ) , and Ratios of Wet-to-Dry Aerosol Radius ( r v f / r o v f , r v c / r o v c ) for Eight Values of Relative Humidity Used in This Study a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d V ( r ) d ln r = i = 1 2 V o i 2 π σ i exp [ ( ln r ln r v o i 2 σ i ) 2 ] ,
d N ( r ) d ln r = i = 1 2 N o i 2 π σ i exp [ ( ln r ln r n o i 2 σ i ) 2 ] ,
ln r n o i = ln r v o i 3 σ i 2 ,
N o i = V o i [ 0.75 / ( π r n o i 3 ) ] exp ( 4.5 σ i 2 ) .
r eff = r min r max π r 3 n ( r ) d r / r min r max π r 2 n ( r ) d r ,
v eff = r min r max ( r r eff ) 2 π r 2 n ( r ) d r / r eff 2 r min r max π r 2 n ( r ) d r ,
n ( r ) = d N / d r .
r ( a w ) = r o [ 1 + ρ m w ( a w ) m o ] 3 ,
n = n w + ( n o n w ) [ r o r r h ] 3 ,

Metrics