Abstract

In order to study the effect of defects on the laser-induced damage of different optical thin films, we carried out damage experiments on two kinds of thin films with a 1ms long-pulse laser. Surface-defect and subsurface-defect damage models were used to explain the damage morphology. The two-dimensional finite element method was applied to calculate the temperature and thermal-stress fields of these two films. The results show that damages of the two films are due to surface and subsurface defects, respectively. Furthermore, the different dominant defects for thin films of different structures are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
    [CrossRef]
  2. G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
    [CrossRef]
  3. Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
    [CrossRef]
  4. Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
    [CrossRef]
  5. J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
    [CrossRef] [PubMed]
  6. S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
    [CrossRef] [PubMed]
  7. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
    [CrossRef]
  8. S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
    [CrossRef]
  9. B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
    [CrossRef]
  10. S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906 (2005).
    [CrossRef]
  11. A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
    [CrossRef]
  12. G. Dai, Y. B. Chen, J. Lu, Z. H. Shen, and X. W. Ni, “Analysis of laser induced thermal mechanical relationship of HfO2/SiO2 high reflective optical thin film at 1064nm,” Chin. Opt. Lett. 7, 601–604 (2009).
    [CrossRef]
  13. S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
    [CrossRef]

2010 (2)

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

2009 (1)

2006 (1)

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

2005 (2)

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906 (2005).
[CrossRef]

2004 (1)

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

2002 (2)

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[CrossRef] [PubMed]

1998 (1)

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

1997 (2)

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[CrossRef]

1990 (1)

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

Akhouayri, H.

Allen, S. D.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Amra, C.

Bertron, I.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Bertussi, B.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Bonneau, F.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Bouchut, P.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

Chen, Y. B.

Combis, P.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Commandre, M.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

Commandré, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Dai, G.

Donohue, J. T.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Fan, Z. X.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Gallais, L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[CrossRef] [PubMed]

Guenther, A. H.

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

Han, Y.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

He, H. B.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Hu, G. H.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Jin, Y. X.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Kudryashov, S. I.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Li, D. W.

Li, S. H.

Ling, X. L.

Liu, G. H.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Liu, X. F.

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Lu, J.

Malaise, F.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

McIver, J. K.

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

Natoli, J. Y.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Natoli, J.-Y.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[CrossRef] [PubMed]

Ni, X. W.

Papernov, S.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906 (2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[CrossRef]

Rullier, J. L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Rullier, J.-L.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

Schmid, A. W.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906 (2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[CrossRef]

Shen, Z. H.

Thomsen, M.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Vierne, J.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

Wang, Z. J.

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Wu, Z. L.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Zhao, Q.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Zhao, Y. A.

Zhou, M.

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447–452 (2004).
[CrossRef]

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

G. H. Liu, M. Zhou, G. H. Hu, X. F. Liu, Y. X. Jin, H. B. He, and Z. X. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Chin. Opt. Lett. (1)

J. Appl. Phys. (3)

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[CrossRef]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906 (2005).
[CrossRef]

Opt. Commun. (1)

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309 (2005).
[CrossRef]

Opt. Eng. (1)

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Proc. SPIE (2)

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Coating structures of the two films.

Fig. 2
Fig. 2

Experimental setup for laser damage of film components.

Fig. 3
Fig. 3

Damage morphologies of film A induced by different laser fluences.

Fig. 4
Fig. 4

Damage morphologies of film B induced by different laser fluences.

Fig. 5
Fig. 5

Scheme of model of film irradiated by a laser.

Fig. 6
Fig. 6

Top layer surface temperature distributions of film A along the radial direction ( t = 1 ms ).

Fig. 7
Fig. 7

Top layer surface thermal-stress distributions of film A along the radial direction ( t = 1 ms ): (a) perfect model, (b) surface- defect model, and (c) subsurface-defect model.

Fig. 8
Fig. 8

Substrate surface temperature distributions of film A along the radial direction ( t = 1 ms ).

Fig. 9
Fig. 9

Substrate surface thermal-stress distributions of film A along radial direction ( t = 1 ms ): (a) perfect model, (b) surface- defect model, and (c) subsurface-defect model.

Fig. 10
Fig. 10

Surface damage of film A: (a) top surface damage and (b) substrate surface damage.

Fig. 11
Fig. 11

Thermal-stress distribution of film B along the axial direction at the center spot.

Fig. 12
Fig. 12

Electric field distributions in the two films.

Tables (2)

Tables Icon

Table 1 Summary of Parameters Used for Calculations and Analysis

Tables Icon

Table 2 Maximum Temperature and Stress on the Two Surfaces of Film B for Different Models a

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

c i ρ i ( t ) T ( r , z , t ) κ i 2 ( r , z , t ) = q i ( r , z , t ) ,
κ i ( r ) T ( r , z , t ) | r = L = κ s ( z ) T ( r , z , t ) | z = H = 0 ,
T ( r , z , 0 ) = T 0 ,
q i ( r , z , t ) = α i | E ( z ) | 2 n i I ( r , t ) ,
I ( r , t ) = I 0 f ( r ) g ( t ) ,
f ( r ) = exp ( 2 r 2 r 0 2 ) ,
g ( t ) = { 1 , 0 < t τ 0 , t > τ .
σ r r + σ z r z + σ r σ θ r = 0 ,
σ z z + σ z r r + σ z r r = 0.
σ r = χ 1 + γ ( γ 1 2 γ ε + ε r ) ,
σ z = χ 1 + γ ( γ 1 2 γ ε + ε z ) ,
σ θ = χ 1 + γ ( γ 1 2 γ ε + ε θ ) ,
σ z r = χ 1 + γ ( γ 1 2 γ ε + ε z r ) .
ε r = u r r + β ( T T 0 ) ,
ε z = u z z + β ( T T 0 ) ,
ε θ = u r r + β ( T T 0 ) ,
ε z r = u r z + u z r ,
A f = 0 L 0 d f α | E ( z ) | 2 n I ( r ) 2 π r d z d r = 0 L I ( r ) 2 π r d r i = 1 k z i 1 z i α i | E ( z ) | 2 n i d z ,
A s = 0 L d f d f + d s α s | E ( z ) | 2 n s I ( r ) 2 π r d z d r .
η = A f A s = i = 1 k z i 1 z i α i | E ( z ) | 2 n i d z d f d f + d s α s | E ( z ) | 2 n s d z .

Metrics