Abstract

Over 100μW of continuous-wave tunable ultraviolet radiation at 370nm is generated by the sum- frequency mixing of radiation from two extended-cavity laser diodes having powers of 60mW at 822nm and 8mW at 671nm in a lithium iodate crystal. The crystal is placed in an external cavity that enhances the powers of two fundamental beams simultaneously by approximately 40. This light source is successfully applied to the laser cooling of trapped ytterbium ions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
    [CrossRef] [PubMed]
  2. K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
    [CrossRef]
  3. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
    [CrossRef]
  4. C. Tamm, “A tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser,” Appl. Phys. B 56, 295–300 (1993)
    [CrossRef]
  5. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  6. D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
    [CrossRef] [PubMed]
  7. K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
    [CrossRef]
  8. S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
    [CrossRef]
  9. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159–4162 (1997).
    [CrossRef] [PubMed]
  10. T. Fujii, H. Kumagai, K. Midorikawa, and M. Obara, “Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms,” Opt. Lett. 25, 1457–1459 (2000).
    [CrossRef]
  11. K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.
  12. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  13. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968).
    [CrossRef]
  14. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980).
    [CrossRef]
  15. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
    [CrossRef]
  16. R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  17. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  18. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  19. M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
    [CrossRef]
  20. K. Sugiyama, “Laser cooling of single Yb174+ ions stored in a RF trap,” Jpn. J. Appl. Phys. 38, 2141–2147 (1999).
    [CrossRef]
  21. K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
    [CrossRef]
  22. C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
    [CrossRef]
  23. Y. Onoda, M. Ikeda, K. Sugiyama, H. Yokoyama, and M. Kitano, “Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity,” Appl. Opt. 48, 1366–1370 (2009).
    [CrossRef] [PubMed]
  24. A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
    [CrossRef] [PubMed]

2009 (3)

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

Y. Onoda, M. Ikeda, K. Sugiyama, H. Yokoyama, and M. Kitano, “Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity,” Appl. Opt. 48, 1366–1370 (2009).
[CrossRef] [PubMed]

2007 (1)

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

2006 (2)

D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
[CrossRef] [PubMed]

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

2005 (2)

T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
[CrossRef] [PubMed]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

2000 (2)

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

T. Fujii, H. Kumagai, K. Midorikawa, and M. Obara, “Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms,” Opt. Lett. 25, 1457–1459 (2000).
[CrossRef]

1999 (1)

K. Sugiyama, “Laser cooling of single Yb174+ ions stored in a RF trap,” Jpn. J. Appl. Phys. 38, 2141–2147 (1999).
[CrossRef]

1997 (1)

1993 (1)

C. Tamm, “A tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser,” Appl. Phys. B 56, 295–300 (1993)
[CrossRef]

1992 (2)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1991 (2)

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

1990 (1)

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

1981 (1)

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

1980 (2)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980).
[CrossRef]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Balzer, C.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Barychev, V.

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

Beaton, D.

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Bell, A. S.

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Bergquist, J. C.

Berkeland, D. J.

Blythe, P. J.

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Braun, A.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Brieger, M.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Büsener, H.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Cetina, M.

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Cox, J. A.

Cruz, F. C.

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Ettler, M.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Falk, J.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980).
[CrossRef]

Fan, Y.-X.

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Fujii, T.

Gill, P.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Guha, S.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980).
[CrossRef]

Hannemann, T.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Hayes, D.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

Hese, A.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Hosaka, K.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Huang, C. H.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Ikeda, M.

Kärtner, F. X.

Kielpinski, D.

Kitano, M.

Klein, H. A.

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Kumagai, H.

Lea, S. N.

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Levick, A. P.

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Lin, W. X.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Margolis, H. S.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Masuda, H.

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Matsukevich, D. N.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Maunz, P.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Midorikawa, K.

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Moehring, D. L.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Moers, F. V.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Monroe, C.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Nakata, A.

K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.

Neuhauser, W.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Obara, M.

Olmschenk, S.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Onae, A.

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

Onoda, Y.

Paape, C.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Peik, E.

T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
[CrossRef] [PubMed]

Renn, A.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Sasaki, K.

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

Schneider, T.

T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
[CrossRef] [PubMed]

Schnier, D.

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Shen, H. Y.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Stannard, A.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Sugiyama, K.

Y. Onoda, M. Ikeda, K. Sugiyama, H. Yokoyama, and M. Kitano, “Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity,” Appl. Opt. 48, 1366–1370 (2009).
[CrossRef] [PubMed]

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

K. Sugiyama, “Laser cooling of single Yb174+ ions stored in a RF trap,” Jpn. J. Appl. Phys. 38, 2141–2147 (1999).
[CrossRef]

K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.

Tamm, C.

T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
[CrossRef] [PubMed]

C. Tamm, “A tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser,” Appl. Phys. B 56, 295–300 (1993)
[CrossRef]

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

Wakita, A.

K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.

Walton, B. R.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

Webster, S. A.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Wunderlich, C.

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

Yokoyama, H.

Younge, K. C.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Yu, G. F.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Zeng, R. R.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Zeng, Z. D.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Zhang, W. J.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Zhou, Y. P.

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Appl. Phys. B (1)

C. Tamm, “A tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser,” Appl. Phys. B 56, 295–300 (1993)
[CrossRef]

Appl. Phys. Lett. (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005).
[CrossRef]

J. Appl. Phys. (2)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980).
[CrossRef]

H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Sugiyama, “Laser cooling of single Yb174+ ions stored in a RF trap,” Jpn. J. Appl. Phys. 38, 2141–2147 (1999).
[CrossRef]

K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000).
[CrossRef]

Opt. Commun. (2)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (5)

C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006).
[CrossRef]

A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991).
[CrossRef] [PubMed]

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009).
[CrossRef]

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005).
[CrossRef] [PubMed]

Other (1)

K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup for SFM of two extended-cavity laser diodes (ECLDs) using a doubly resonant external cavity: Gr, diffraction grating; CL, collimation lens; HWP, half-wave plate; QWP, quarter-wave plate; DM, dichroic mirror; PBS, polarization beam splitter; PD, photodiode.

Fig. 2
Fig. 2

Resonance signals and polarization spectroscopic signals of external cavity at 822 nm (left) and 671 nm (right). (a) Resonance signals by detection of the beams leaked through a concave mirror. Upper trace shows the voltage applied to the PZT for linearly scanning the cavity length. (b) Polarization spectroscopic signals (upper trace) and resonance signals (lower trace) when the cavity length was linearly scanned. (c) Same as (b) when servo loops were closed. All traces were obtained at the maximum fundamental powers, except (a) at 822 nm , where the power was decreased to avoid broadening of the resonance signal caused by the saturation of the photodiode. The traces in (b) and (c) are on the same scales.

Fig. 3
Fig. 3

Sum-frequency power versus fundamental powers at (a) 822 nm and (b) 671 nm , while the other fundamental power was fixed at the maximum available power indicated in the figures.

Fig. 4
Fig. 4

Sample of linear absorption spectra of the S 2 1 / 2 P 2 1 / 2 transitions in Yb + in a hollow cathode lamp. Relative strengths and frequency separations of related isotopes are indicated.

Fig. 5
Fig. 5

Fluorescence spectra of the S 2 1 / 2 P 2 1 / 2 transitions in laser-cooled trapped Yb 174 + obtained by the frequency sweep of the sum frequency: (a) large number of ions and (b) from 2 to 4 ions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 3 = ( γ M 1 A 1 P 1 ) ( γ M 2 A 2 P 2 ) γ S ,
γ S = ( 4 ω 1 ω 2 ω 3 / π ϵ 0 c 4 n 3 2 ) d eff 2 l h ( B , ξ i ) ,

Metrics