B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

B. Pan, Z. Y. Wang, and Z. X. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Opt. Express 18, 1011–1023 (2010).

[CrossRef]
[PubMed]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).

[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).

[CrossRef]
[PubMed]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

B. Pan, Z. Y. Wang, and H. M. Xie, “Generalized spatial-gradient based digital image correlation for displacement and shape measurement with subpixel accuracy,” J. Strain Anal. Eng. Des. 44, 659–669 (2009).

[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).

[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).

[CrossRef]

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civ. Eng. 18, 46–57 (2004).

[CrossRef]

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 993–1008 (2003).

[CrossRef]

S. P. Ma and G. C. Jin, “New correlation coefficients designed for digital speckle correlation method (DSCM),” Proc. SPIE 5058, 25–33 (2003).

[CrossRef]

Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric motion estimation algorithm with illumination and lens distortion correction,” IEEE Trans. Image Process. 12, 395–408 (2003).

[CrossRef]

Y. Wang and A. M. Cuitiño, “Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation,” Int. J. Solids Struct. 39, 3777–3796 (2002).

[CrossRef]

F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, “Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation,” Appl. Opt. 41, 6815–6828 (2002).

[CrossRef]
[PubMed]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

[CrossRef]

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).

[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).

[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

A. W. Gruen, “Adaptive least squares correlation: a powerful image matching technique,” S. Afr. J. Photogr. Rem. Sensing Cartogr. 14(3), 175–187 (1985).

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric motion estimation algorithm with illumination and lens distortion correction,” IEEE Trans. Image Process. 12, 395–408 (2003).

[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).

[CrossRef]

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 993–1008 (2003).

[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 993–1008 (2003).

[CrossRef]

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).

[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, Advances in Two-Dimensional and Three-Dimensional Computer Vision, P.K.Rastogi, ed., Topics in Applied Physics (Springer–Verlag, 2000), Vol. 77, pp. 323–372.

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

Y. Wang and A. M. Cuitiño, “Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation,” Int. J. Solids Struct. 39, 3777–3796 (2002).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

A. W. Gruen, “Adaptive least squares correlation: a powerful image matching technique,” S. Afr. J. Photogr. Rem. Sensing Cartogr. 14(3), 175–187 (1985).

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 993–1008 (2003).

[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, Advances in Two-Dimensional and Three-Dimensional Computer Vision, P.K.Rastogi, ed., Topics in Applied Physics (Springer–Verlag, 2000), Vol. 77, pp. 323–372.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civ. Eng. 18, 46–57 (2004).

[CrossRef]

S. P. Ma and G. C. Jin, “New correlation coefficients designed for digital speckle correlation method (DSCM),” Proc. SPIE 5058, 25–33 (2003).

[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).

[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

J. P. Lewis, “Fast normalized cross correlation,” 2003, available at http://www.idiom.com/˜zilla/Papers/nvisionInterface/nip.html.

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civ. Eng. 18, 46–57 (2004).

[CrossRef]

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).

[CrossRef]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).

[CrossRef]

B. Pan, Z. Y. Wang, and Z. X. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Opt. Express 18, 1011–1023 (2010).

[CrossRef]
[PubMed]

S. P. Ma and G. C. Jin, “New correlation coefficients designed for digital speckle correlation method (DSCM),” Proc. SPIE 5058, 25–33 (2003).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, Advances in Two-Dimensional and Three-Dimensional Computer Vision, P.K.Rastogi, ed., Topics in Applied Physics (Springer–Verlag, 2000), Vol. 77, pp. 323–372.

Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric motion estimation algorithm with illumination and lens distortion correction,” IEEE Trans. Image Process. 12, 395–408 (2003).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion, and Deformation Measurements (Springer, 2009).

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).

[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).

[CrossRef]

B. Pan, Z. Y. Wang, and Z. X. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Opt. Express 18, 1011–1023 (2010).

[CrossRef]
[PubMed]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).

[CrossRef]
[PubMed]

B. Pan, Z. Y. Wang, and H. M. Xie, “Generalized spatial-gradient based digital image correlation for displacement and shape measurement with subpixel accuracy,” J. Strain Anal. Eng. Des. 44, 659–669 (2009).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric motion estimation algorithm with illumination and lens distortion correction,” IEEE Trans. Image Process. 12, 395–408 (2003).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

W. H. Press, C++ Numerical Algorithms (Publishing House of Electronics Industry, 2003).

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion, and Deformation Measurements (Springer, 2009).

R. S. Sirohi, Optical Methods of Measurement: Wholefield Techniques, 2nd ed. (CRC, 2009).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, Advances in Two-Dimensional and Three-Dimensional Computer Vision, P.K.Rastogi, ed., Topics in Applied Physics (Springer–Verlag, 2000), Vol. 77, pp. 323–372.

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion, and Deformation Measurements (Springer, 2009).

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).

[CrossRef]

Y. Wang and A. M. Cuitiño, “Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation,” Int. J. Solids Struct. 39, 3777–3796 (2002).

[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

B. Pan, Z. Y. Wang, and Z. X. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Opt. Express 18, 1011–1023 (2010).

[CrossRef]
[PubMed]

B. Pan, Z. Y. Wang, and H. M. Xie, “Generalized spatial-gradient based digital image correlation for displacement and shape measurement with subpixel accuracy,” J. Strain Anal. Eng. Des. 44, 659–669 (2009).

[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).

[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).

[CrossRef]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).

[CrossRef]

B. Pan, Z. Y. Wang, and H. M. Xie, “Generalized spatial-gradient based digital image correlation for displacement and shape measurement with subpixel accuracy,” J. Strain Anal. Eng. Des. 44, 659–669 (2009).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).

[CrossRef]
[PubMed]

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).

[CrossRef]
[PubMed]

M. Sjodahl and L. R. Benckert, “Electronic speckle photography: Analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).

[CrossRef]
[PubMed]

F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, “Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation,” Appl. Opt. 41, 6815–6828 (2002).

[CrossRef]
[PubMed]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).

[CrossRef]
[PubMed]

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).

[CrossRef]

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).

[CrossRef]

Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric motion estimation algorithm with illumination and lens distortion correction,” IEEE Trans. Image Process. 12, 395–408 (2003).

[CrossRef]

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 993–1008 (2003).

[CrossRef]

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

[CrossRef]

Y. Wang and A. M. Cuitiño, “Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation,” Int. J. Solids Struct. 39, 3777–3796 (2002).

[CrossRef]

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civ. Eng. 18, 46–57 (2004).

[CrossRef]

B. Pan, Z. Y. Wang, and H. M. Xie, “Generalized spatial-gradient based digital image correlation for displacement and shape measurement with subpixel accuracy,” J. Strain Anal. Eng. Des. 44, 659–669 (2009).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of subpixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).

[CrossRef]

J. Y. Huang, T. Zhu, X. Y. Pan, L. Qin, X. L. Peng, C. Y. Xiong, and J. Fang, “A high-efficiency digital image correlation method based on a fast recursive scheme,” Meas. Sci. Technol. 21, 035101 (2010).

[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).

[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).

[CrossRef]

B. Pan, Z. Y. Wang, and Z. X. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Opt. Express 18, 1011–1023 (2010).

[CrossRef]
[PubMed]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).

[CrossRef]
[PubMed]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).

[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).

[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).

[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).

[CrossRef]

S. P. Ma and G. C. Jin, “New correlation coefficients designed for digital speckle correlation method (DSCM),” Proc. SPIE 5058, 25–33 (2003).

[CrossRef]

A. W. Gruen, “Adaptive least squares correlation: a powerful image matching technique,” S. Afr. J. Photogr. Rem. Sensing Cartogr. 14(3), 175–187 (1985).

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).

[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178(2009).

[CrossRef]

R. S. Sirohi, Optical Methods of Measurement: Wholefield Techniques, 2nd ed. (CRC, 2009).

[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, Advances in Two-Dimensional and Three-Dimensional Computer Vision, P.K.Rastogi, ed., Topics in Applied Physics (Springer–Verlag, 2000), Vol. 77, pp. 323–372.

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion, and Deformation Measurements (Springer, 2009).

W. H. Press, C++ Numerical Algorithms (Publishing House of Electronics Industry, 2003).

J. P. Lewis, “Fast normalized cross correlation,” 2003, available at http://www.idiom.com/˜zilla/Papers/nvisionInterface/nip.html.