Abstract

A liquid tunable lens with an extended depth of focus (DOF) is proposed. By integrating a phase plate with rotational symmetric quartic function (QF) contour into the liquid lens cavity, the lens can achieve higher tolerance to the defocus aberration. The liquid lens was fabricated with a convenient and low-cost process that combined single-point diamond turning (SPDT) with soft lithography using polydimethylsiloxane (PDMS). Experimental results demonstrate that both focal length tunability and extended DOF can be achieved with the proposed liquid lens.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Malacara and B. J. Thompson, Handbook of Optical Engineering (Marcel Dekker, 2001).
  2. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
    [CrossRef] [PubMed]
  3. J.-H. Sun, B.-R. Hsueh, Y.-C. Fang, J. MacDonald, and C.-C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009).
    [CrossRef] [PubMed]
  4. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16, 14954–14960 (2008).
    [CrossRef] [PubMed]
  5. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef] [PubMed]
  6. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  8. H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
    [CrossRef] [PubMed]
  9. H.-M. Son, M. Y. Kim, and Y.-J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express 17, 14339–14350 (2009).
    [CrossRef] [PubMed]
  10. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef] [PubMed]
  11. G. Y. Zhou, H. M. Leung, H. B. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34, 2793–2795 (2009).
    [CrossRef] [PubMed]
  12. H. B. Yu, G. Y. Zhou, C. F. Siong, and S. H. Wang, “Lens with transformable-type and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quantum Electron. 15, 1317–1322 (2009).
    [CrossRef]
  13. H. M. Leung, G. Y. Zhou, H. B. Yu, F. S. Chau, and A. S. Kumar, “Liquid tunable double-focus lens fabricated with diamond cutting and soft lithography,” Appl. Opt. 48, 5733–5740 (2009).
    [CrossRef] [PubMed]
  14. J. E. R. Dowski and W. T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef] [PubMed]
  15. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004).
    [CrossRef] [PubMed]
  16. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
    [CrossRef] [PubMed]
  17. L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. J. R. Sheppard, and N. Chen, “Super-resolution along extended depth of focus with binary-phase filters for the Gaussian beam,” J. Opt. Soc. Am. A 25, 2095–2101 (2008).
    [CrossRef]
  18. J. Ojeda-Castaneda, J. E. A. Landgrave, and H. M. Escamilla, “Annular phase-only mask for high focal depth,” Opt. Lett. 30, 1647–1649 (2005).
    [CrossRef] [PubMed]
  19. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771–773 (2003).
    [CrossRef] [PubMed]
  20. D. Zalvidea and E. E. Sicre, “Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function,” Appl. Opt. 37, 3623–3627 (1998).
    [CrossRef]
  21. D. Zalvidea, C. Colautti, and E. E. Sicre, “Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function,” J. Opt. Soc. Am. A 17, 867–873 (2000).
    [CrossRef]
  22. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658–3668 (2008).
    [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  24. H. M. Leung, G. Y. Zhou, H. B. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20, 025021 (2010).
    [CrossRef]
  25. H. B. Yu, G. Y. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
    [CrossRef] [PubMed]

2010 (2)

H. M. Leung, G. Y. Zhou, H. B. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20, 025021 (2010).
[CrossRef]

H. B. Yu, G. Y. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

2009 (8)

S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
[CrossRef] [PubMed]

J.-H. Sun, B.-R. Hsueh, Y.-C. Fang, J. MacDonald, and C.-C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009).
[CrossRef] [PubMed]

G. Y. Zhou, H. M. Leung, H. B. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34, 2793–2795 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, C. F. Siong, and S. H. Wang, “Lens with transformable-type and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quantum Electron. 15, 1317–1322 (2009).
[CrossRef]

H. M. Leung, G. Y. Zhou, H. B. Yu, F. S. Chau, and A. S. Kumar, “Liquid tunable double-focus lens fabricated with diamond cutting and soft lithography,” Appl. Opt. 48, 5733–5740 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

H.-M. Son, M. Y. Kim, and Y.-J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express 17, 14339–14350 (2009).
[CrossRef] [PubMed]

G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

2005 (1)

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771–773 (2003).
[CrossRef] [PubMed]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

2000 (1)

1998 (1)

1995 (1)

Andersson, M.

Barrera-Rivera, K. A.

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Calixto, S.

Cathey, W. T.

Chau, F. S.

Chen, N.

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Christian, W.

Colautti, C.

Diaz, F.

Dowski, E. R.

Dowski, J. E. R.

Escamilla, H. M.

Fang, Y.-C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

Harvey, A. R.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hsueh, B.-R.

Hu, C.-C.

Huckridge, D.

Huignard, J.-P.

Kim, M. Y.

Kobrin, P.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kumar, A. S.

Landgrave, J. E. A.

Lee, F. W.

Lee, Y.-J.

Leung, H. M.

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Liu, L.

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Loiseaux, B.

MacDonald, J.

Malacara, D.

D. Malacara and B. J. Thompson, Handbook of Optical Engineering (Marcel Dekker, 2001).

Mezouari, S.

Muyo, G.

Narayanaswamy, S.

Ojeda-Castaneda, J.

Reichelt, S.

Ren, H.

Richa, A. M.

Rosete-Aguilar, M.

Sánchez-Marin, F. J.

Sánchez-Morales, M. E.

Seabury, C.

Sheppard, C. J. R.

Sherif, S. S.

Sicre, E. E.

Singh, A.

Siong, C. F.

H. B. Yu, G. Y. Zhou, C. F. Siong, and S. H. Wang, “Lens with transformable-type and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quantum Electron. 15, 1317–1322 (2009).
[CrossRef]

Son, H.-M.

Sun, J.-H.

Thompson, B. J.

D. Malacara and B. J. Thompson, Handbook of Optical Engineering (Marcel Dekker, 2001).

Wang, L.

Wang, S. H.

H. B. Yu, G. Y. Zhou, C. F. Siong, and S. H. Wang, “Lens with transformable-type and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quantum Electron. 15, 1317–1322 (2009).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Wood, A.

Wu, S.-T.

Xianyu, H.

Xu, S.

Yang, Q.

Yu, H. B.

Zalvidea, D.

Zappe, H.

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Zhou, G. Y.

Appl. Opt. (7)

Appl. Phys. Lett. (2)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. B. Yu, G. Y. Zhou, C. F. Siong, and S. H. Wang, “Lens with transformable-type and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quantum Electron. 15, 1317–1322 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

H. M. Leung, G. Y. Zhou, H. B. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20, 025021 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (7)

Opt. Lett. (3)

Other (2)

D. Malacara and B. J. Thompson, Handbook of Optical Engineering (Marcel Dekker, 2001).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic cross-sectional view of the hybrid tunable lens with QF phase plate and (b) approximate dimensions of the features of the proposed liquid lens.

Fig. 2
Fig. 2

Simulated intensity distribution of (a) the proposed liquid lens and (b) the conventional lens.

Fig. 3
Fig. 3

Summary of the fabrication flow processes.

Fig. 4
Fig. 4

(a) Measured surface contour of the PMMA mold and the designed contour and (b) the measured surface contour of the PMMA mold and the PDMS slab.

Fig. 5
Fig. 5

AFM images of (a) the surface of diamond-turned PMMA and (b) the PDMS surface of final lens device.

Fig. 6
Fig. 6

Schematic of the experimental setup to measure focal length and spot light intensity.

Fig. 7
Fig. 7

Focal length versus injection volume.

Fig. 8
Fig. 8

Measured on-axis focus spot intensity distributions for focus length at (a) 47.5 mm and (b) 34.4 mm .

Fig. 9
Fig. 9

Light spot images at different planes for focus length at 47.5 mm from (a) the proposed lens and (b) the conventional lens.

Fig. 10
Fig. 10

Light spot images at different planes for focus length at 34.4 mm from (a) the proposed lens and (b) the conventional lens.

Fig. 11
Fig. 11

Best-focus images of a portion of a resolution target when the focus length is tuned to (a) 47.5 mm , (b) 34.4 mm , and (c) 23.2 mm .

Fig. 12
Fig. 12

Images captured at different positions away from the best-focus position for (a) the proposed liquid lens and (b) the conventional liquid lens.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ( r ) = { d 0 + α π λ n l n p [ ( r R 1 ) 2 0.5 ] 2 , 0 r R 1 d 0 , R 1 r R 2 ,
I ( r i , ψ ) = 4 π 2 | 0 1 exp [ i α ( ρ 2 0.5 ) 2 ] exp ( i ψ ρ 2 ) J 0 ( r i ρ ) ρ d ρ | 2 ,
r i = 2 π R 1 λ d i r , ψ = π λ ( R 1 d i ) 2 Δ d ,

Metrics