Abstract

We report on a novel aberration correction technique that uses the sequential combination of two different aberration measurement methods to correct for setup-induced and specimen-induced aberrations. The advantages of both methods are combined and, thus, the measurement time is strongly reduced without loss of accuracy. The technique is implemented using a spatial-light-modulator-based wide-field microscope without the need for additional components (e.g., a Shack–Hartmann sensor). The aberrations are measured without a reference object by directly using the specimen to be imaged. We demonstrate experimental results for technical as well as biological specimens.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
    [CrossRef] [PubMed]
  2. P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
    [CrossRef]
  3. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
    [CrossRef] [PubMed]
  4. R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004).
    [CrossRef] [PubMed]
  5. A. Wright, B. Patterson, S. Poland, J. Girkin, G. Gibson, and M. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222–228 (2006).
    [CrossRef] [PubMed]
  6. C. Paterson, I. Munro, and J. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
    [CrossRef] [PubMed]
  7. M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
    [CrossRef]
  8. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
    [CrossRef] [PubMed]
  9. C. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
    [CrossRef] [PubMed]
  10. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  11. M. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London Ser. A 365, 2829–2843 (2007).
    [CrossRef]
  12. M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
    [CrossRef]
  13. L. A. Poyneer, “Scene-based Shack–Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815(2003).
    [CrossRef] [PubMed]
  14. T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
    [CrossRef]
  15. M. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000).
    [CrossRef]
  16. L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
    [CrossRef]
  17. S. Chamot and C. Dainty, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006).
    [CrossRef] [PubMed]
  18. A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. wiss. Mikr. 10, 433–440 (1893).
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
    [CrossRef]
  20. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).
  21. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
    [CrossRef] [PubMed]
  22. J. Braat, “Polynomial expansion of severely aberrated wave fronts,” J. Opt. Soc. Am. A 4, 643–650 (1987).
    [CrossRef]
  23. J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
    [CrossRef]
  24. M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).
    [CrossRef] [PubMed]
  25. T. Kalogeropoulos, “Improved stochastic optimization algorithms for adaptive optics,” Comput. Phys. Commun. 99, 255–269 (1997).
    [CrossRef]
  26. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [CrossRef]
  27. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
    [CrossRef]
  28. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
    [CrossRef] [PubMed]
  29. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
    [CrossRef]

2010 (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[CrossRef]

2009 (1)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

2008 (1)

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

2007 (2)

2006 (3)

2005 (1)

2004 (4)

M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[CrossRef] [PubMed]

R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004).
[CrossRef] [PubMed]

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

2003 (3)

2002 (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
[CrossRef]

2000 (2)

1998 (1)

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

1997 (3)

P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
[CrossRef]

M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).
[CrossRef] [PubMed]

T. Kalogeropoulos, “Improved stochastic optimization algorithms for adaptive optics,” Comput. Phys. Commun. 99, 255–269 (1997).
[CrossRef]

1996 (1)

1991 (1)

1987 (1)

1893 (1)

A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. wiss. Mikr. 10, 433–440 (1893).

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Arimoto, R.

R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004).
[CrossRef] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[CrossRef]

Booth, M.

M. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London Ser. A 365, 2829–2843 (2007).
[CrossRef]

M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[CrossRef] [PubMed]

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Booth, M. J.

Braat, J.

Carhart, G.

Carhart, G. W.

Chamot, S.

Dainty, C.

Dainty, J.

Dalimier, E.

De Lima Monteiro, D.

M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
[CrossRef]

Debarre, D.

Fienup, J. R.

Gehner, A.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

Gibson, G.

Girkin, J.

Gorski, W.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

Gu, M.

Hafner, J.

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

Haist, T.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Hewlett, S.

P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
[CrossRef]

Hupfer, W. J.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[CrossRef]

Kalogeropoulos, T.

T. Kalogeropoulos, “Improved stochastic optimization algorithms for adaptive optics,” Comput. Phys. Commun. 99, 255–269 (1997).
[CrossRef]

Köhler, A.

A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. wiss. Mikr. 10, 433–440 (1893).

Liesener, J.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

Loktev, M.

M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[CrossRef]

Miller, J. J.

Munro, I.

Murray, J.

R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004).
[CrossRef] [PubMed]

Neil, M.

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Neil, M. A.

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Osten, W.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

Padgett, M.

Paterson, C.

Patterson, B.

Poland, S.

Poyneer, L. A.

Pruidze, D. V.

Reicherter, M.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

Ricklin, J.

Ricklin, J. C.

Schwertner, M.

Seifert, L.

L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

Sheppard, C.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Tiziani, H.

L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

Török, P.

P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
[CrossRef]

Varga, P.

P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
[CrossRef]

Vdivin, G.

M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
[CrossRef]

Voelz, D. G.

Vorontsov, M.

Vorontsov, M. A.

Wallace, K.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

Warber, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

Wilson, T.

Wright, A.

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Appl. Opt. (2)

Comput. Phys. Commun. (1)

T. Kalogeropoulos, “Improved stochastic optimization algorithms for adaptive optics,” Comput. Phys. Commun. 99, 255–269 (1997).
[CrossRef]

J. Microsc. (4)

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997).
[CrossRef]

R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[CrossRef]

Opt. Commun. (2)

L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. A (1)

M. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London Ser. A 365, 2829–2843 (2007).
[CrossRef]

Proc. SPIE (4)

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004).
[CrossRef]

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).
[CrossRef]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
[CrossRef]

Z. wiss. Mikr. (1)

A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. wiss. Mikr. 10, 433–440 (1893).

Other (1)

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup of SLM-based microscope. The SLM is placed in a plane conjugate to the pupil of the microscope objective. An additional carrier frequency is necessary to separate the desired corrected image from the zeroth order of the SLM.

Fig. 2
Fig. 2

(a) Grating-based method without aberrations; to reduce the complexity, the SLM is here shown in transmission. (b) Grating-based aberration measurement with aberrations.

Fig. 3
Fig. 3

Two different measurement pupils with eight random positioned grating apertures.

Fig. 4
Fig. 4

One CCD frame for the grating-based method when imaging a simple rectangular object. To improve the measurement speed, eight grating apertures are used in parallel, leading to eight copies in the image plane. Because of the aberration, the rectangle is slightly shifted in different directions within the individual eight images. Because of diffraction at the small gratings in the pupil plane, the individual image copies have a low quality.

Fig. 5
Fig. 5

Grating-based measurement results: uncorrected (left) and corrected (right) diatom; the aberrations are coma, spherical aberration, and defocus.

Fig. 6
Fig. 6

Stochastic method: the images obtained by random variation of the correction hologram are analyzed.

Fig. 7
Fig. 7

Algorithm for stochastic correction.

Fig. 8
Fig. 8

Uncorrected image (aberration: defocus, coma, and spherical aberration) (left); result after stochastic aberration correction (right).

Fig. 9
Fig. 9

(a) Diatom with defocus, astigmatism, and spherical aberration, (b) after grating-based correction, and (c) final correction after sequential combination of grating-based and stochastic correction.

Metrics