Abstract

We evaluate the sensitivity and thermal resolution of the fluorescence of europium (III) thenoyltrifluoroacetonate (EuTTA) in order to convert absorbed thermal radiation into visible. We analyze the variation of the fluorescence properties of EuTTA (specifically, amplitude power and lifetime) after absorbed thermal radiation has caused a change in the local temperature of the material. We propose to analyze the thermal dependence of the fluorescence decay with an integral functional. Such operation correlates the variations of lifetime and amplitude in a single value. With this method of analysis, we study one param eter with increased thermal resolution and linear temperature dependence. The thermal resolution achieved with amplitude power is 0.11K and with lifetime is 0.83K at 305K. The sensitivity of the integral functional is 25nJ/K, yielding an increased thermal resolution of 0.07K.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.
  2. A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
    [CrossRef]
  3. E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
    [CrossRef]
  4. M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
    [CrossRef]
  5. A. Merla and G. L. Romani, “Functional infrared imaging: new approaches and applications of thermal imaging to medicine,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp, 417–423.
  6. A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
    [CrossRef]
  7. C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004).
    [CrossRef]
  8. M. Garbuny, T. P. Vogl, and J. R. Hansen, “Image converter for thermal radiation,” J. Opt. Soc. Am. 51, 261–273 (1961).
    [CrossRef]
  9. M. Kleinerman, “Infrared image converter,” U.S. patent 3,639,765 (1 February 1972).
  10. M. S. Scholl, “Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors,” Proc. SPIE 2730, 572–575 (1995).
  11. M. S. Scholl, “Measured spatial properties of the cw Nd:YAG laser beam,” Appl. Opt. 19, 3655–3659 (1980).
    [CrossRef]
  12. R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
    [CrossRef]
  13. F. Urbach, N. R. Nail, and D. Pearlman, “The observation of temperature distributions and of thermal radiation by means of non-linear phosphors,” J. Opt. Soc. Am. 39, 1011–1019(1949).
    [CrossRef]
  14. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
    [CrossRef]
  15. A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
    [CrossRef]
  16. A. I. Carlson, “Transient temperature response of thin film thermal detectors in infrared imaging systems,” Appl. Opt. 8, 243–253 (1969).
    [CrossRef]
  17. J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
    [CrossRef]
  18. J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
    [CrossRef]
  19. G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
    [CrossRef]
  20. G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530 and 550–560nm bands,” Appl. Opt. 42, 3251–3258 (2003).
    [CrossRef]
  21. M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986).
    [CrossRef]
  22. G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
    [CrossRef]
  23. G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
    [CrossRef]
  24. J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
    [CrossRef]
  25. V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
    [CrossRef]
  26. V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006).
    [CrossRef]
  27. M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
    [CrossRef]
  28. B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
    [CrossRef]
  29. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
    [CrossRef]
  30. D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
    [CrossRef]
  31. J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002).
    [CrossRef]
  32. J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
    [CrossRef]
  33. G. A. Hornbeck, “Optical methods of temperature measurement,” Appl. Opt. 5, 179–186 (1966).
    [CrossRef]
  34. E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).
  35. P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982).
    [CrossRef]
  36. P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983).
    [CrossRef]
  37. T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints (Springer, 2005).
  38. B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).
  39. R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
    [CrossRef]
  40. M. L. Bhaumik, “Quenching and temperature dependence of fluorescence in rare-earth chelates,” J. Chem. Phys. 40, 3711–3715 (1964).
    [CrossRef]
  41. G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
    [CrossRef]
  42. G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
    [CrossRef]
  43. B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008).
    [CrossRef]
  44. G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).
  45. M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
    [CrossRef]
  46. M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds. (Marcel Dekker, 2001), Chap. 18, pp. 649–699.
  47. L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006).
    [CrossRef]
  48. V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
    [CrossRef]
  49. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
    [CrossRef]
  50. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer-Verlag, 1999).
  51. A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999).
    [CrossRef]
  52. R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” in Selected Papers on Semiconductor Infrared Detectors, A.Rogalski, ed., SPIE Milestone Series (1992), Vol. MS66, pp. 13–20.
  53. R. D. Hudson, Infrared System Engineering (Wiley, 1969).
  54. R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).
  55. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  56. J. P. Holman, Heat Transfer (McGraw-Hill, 1997).
  57. M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.
  58. M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies (Elsevier, 2002).
  59. A. Rogalski, “Infrared detectors for the future,” Acta Phys. Pol. A 116, 389–406 (2009).

2009

A. Rogalski, “Infrared detectors for the future,” Acta Phys. Pol. A 116, 389–406 (2009).

2008

B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008).
[CrossRef]

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

2007

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
[CrossRef]

2006

L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006).
[CrossRef]

G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).

V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006).
[CrossRef]

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
[CrossRef]

2005

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

2004

J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
[CrossRef]

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004).
[CrossRef]

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

2003

G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530 and 550–560nm bands,” Appl. Opt. 42, 3251–3258 (2003).
[CrossRef]

G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
[CrossRef]

G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
[CrossRef]

2002

J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
[CrossRef]

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

2000

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

1999

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999).
[CrossRef]

1998

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

1997

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

1996

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
[CrossRef]

1995

M. S. Scholl, “Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors,” Proc. SPIE 2730, 572–575 (1995).

1986

M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986).
[CrossRef]

1983

P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983).
[CrossRef]

1982

P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982).
[CrossRef]

1980

1969

1966

1964

M. L. Bhaumik, “Quenching and temperature dependence of fluorescence in rare-earth chelates,” J. Chem. Phys. 40, 3711–3715 (1964).
[CrossRef]

1963

R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
[CrossRef]

1961

1949

Albertini, O.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Alfaro, M.

M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
[CrossRef]

G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).

M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.

Allison, S. W.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Apinaniz, E.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Barducci, A.

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

Basu, B. B. J.

B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008).
[CrossRef]

Baxter, G. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Beaulieu, R.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
[CrossRef]

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

Bhaumik, M. L.

M. L. Bhaumik, “Quenching and temperature dependence of fluorescence in rare-earth chelates,” J. Chem. Phys. 40, 3711–3715 (1964).
[CrossRef]

Callis, J. B.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Campbell, B. T.

B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).

Carlomagno, G. M.

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004).
[CrossRef]

Carlson, A. I.

Carlson, B.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Castrellon, J.

J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
[CrossRef]

Celorrio, R.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Chasmar, R. P.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).

Chen, D.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Cheng, M.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Chin, S. L.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
[CrossRef]

Collins, S. F.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Currie, J.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Dabrowski, M.

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

Dalton, L. R.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Dapeng, C.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Dong, F.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Dong, L.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Feist, J. P.

A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
[CrossRef]

Fengliang, D.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Fern, G. R.

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

Fernicola, V. C.

L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006).
[CrossRef]

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

Galleano, R.

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

Garbey, M.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

Garbuny, M.

Gargano, M.

M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.

Gillies, G. T.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Gouterman, M.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Grattan, K. T. V.

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Gudmundsen, R. A.

R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
[CrossRef]

Guo, Z.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Guzzi, D.

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

Hansen, J. R.

Henini, M.

M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies (Elsevier, 2002).

Heyes, A. L.

A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
[CrossRef]

Holman, J. P.

J. P. Holman, Heat Transfer (McGraw-Hill, 1997).

Hornbeck, G. A.

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

Ireland, T. G.

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

Istratov, A. A.

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999).
[CrossRef]

Jiao, B.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Jones, F. E.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).

Jones, R. C.

R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” in Selected Papers on Semiconductor Infrared Detectors, A.Rogalski, ed., SPIE Milestone Series (1992), Vol. MS66, pp. 13–20.

Khalil, G. E.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Kleinerman, M.

M. Kleinerman, “Infrared image converter,” U.S. patent 3,639,765 (1 February 1972).

Kolodner, P.

P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983).
[CrossRef]

P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982).
[CrossRef]

Kowalewski, T. A.

J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer-Verlag, 1999).

Lau, K.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Lessard, R. A.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
[CrossRef]

Li, C.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Liang, P.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Liu, T.

T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints (Springer, 2005).

B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).

Lopez, V.

V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006).
[CrossRef]

V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

Lou, C.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Ludwig, N.

M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.

Madariaga, N.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Marcoionni, P.

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

Marsh, O. J.

R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
[CrossRef]

Matovich, E.

R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
[CrossRef]

Mendioroz, A.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Meola, C.

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004).
[CrossRef]

Merla, A.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

A. Merla and G. L. Romani, “Functional infrared imaging: new approaches and applications of thermal imaging to medicine,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp, 417–423.

Miao, Z.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Milazzo, M.

M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.

Nail, N. R.

Oleaga, A.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Ou, Y.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Paez, G.

M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
[CrossRef]

V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006).
[CrossRef]

G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).

V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
[CrossRef]

G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530 and 550–560nm bands,” Appl. Opt. 42, 3251–3258 (2003).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
[CrossRef]

M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds. (Marcel Dekker, 2001), Chap. 18, pp. 649–699.

M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Panas, A. J.

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

Paranjape, M.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Pavlidis, I.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

Pearlman, D.

Pertrucci, F.

M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.

Phelan, G. P.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

Pippi, I.

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

Preiskorn, M.

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

Qingchuan, Z.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Razeghi, M.

M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies (Elsevier, 2002).

Rogalski, A.

A. Rogalski, “Infrared detectors for the future,” Acta Phys. Pol. A 116, 389–406 (2009).

Romani, G. L.

A. Merla and G. L. Romani, “Functional infrared imaging: new approaches and applications of thermal imaging to medicine,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp, 417–423.

Rosso, L.

L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006).
[CrossRef]

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

Salazar, A.

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Sandoval, J.

J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
[CrossRef]

Scholl, M. S.

M. S. Scholl, “Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors,” Proc. SPIE 2730, 572–575 (1995).

M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986).
[CrossRef]

M. S. Scholl, “Measured spatial properties of the cw Nd:YAG laser beam,” Appl. Opt. 19, 3655–3659 (1980).
[CrossRef]

Seefeldt, S.

A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
[CrossRef]

Shi, S.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Silver, J.

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

Smith, R. A.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).

Stasiek, J. A.

J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002).
[CrossRef]

Strojink, M.

M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.

Strojnik, M.

M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
[CrossRef]

V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006).
[CrossRef]

G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).

V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
[CrossRef]

G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530 and 550–560nm bands,” Appl. Opt. 42, 3251–3258 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
[CrossRef]

M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds. (Marcel Dekker, 2001), Chap. 18, pp. 649–699.

Strojnik-Scholl, M.

M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

Sullivan, J. P.

B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).

T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints (Springer, 2005).

Sun, N.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

Sun, T.

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Trimmier, J. R.

M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986).
[CrossRef]

Tyson, J. A.

P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983).
[CrossRef]

P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982).
[CrossRef]

Urbach, F.

Van Keuren, E.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Vasantharajan, N.

B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008).
[CrossRef]

Vogl, T. P.

Vyvenko, O. F.

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999).
[CrossRef]

Wade, S. A.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Weibing, W.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Wilstead, N.

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

Withnall, R.

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

Xiaoping, W.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Ye, T.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Zhang, Q.

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

Zhang, Z. Y.

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Zheying, G.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Zhihui, D.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Zmuda, S.

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

Acta Phys. Pol. A

A. Rogalski, “Infrared detectors for the future,” Acta Phys. Pol. A 116, 389–406 (2009).

Appl. Opt.

Appl. Phys. Lett.

P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982).
[CrossRef]

P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983).
[CrossRef]

IEEE Trans. Biomed. Eng.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007).
[CrossRef]

Infrared Phys. Technol.

A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002).
[CrossRef]

A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007).
[CrossRef]

B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007).
[CrossRef]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004).
[CrossRef]

J. Appl. Phys.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

J. Chem. Phys.

R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963).
[CrossRef]

M. L. Bhaumik, “Quenching and temperature dependence of fluorescence in rare-earth chelates,” J. Chem. Phys. 40, 3711–3715 (1964).
[CrossRef]

J. Electrochem. Soc.

M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986).
[CrossRef]

J. Lumin.

B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D

E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008).
[CrossRef]

Meas. Sci. Technol.

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004).
[CrossRef]

Opt. Eng.

J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002).
[CrossRef]

R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006).
[CrossRef]

G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003).
[CrossRef]

Opt. Laser Technol.

A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006).
[CrossRef]

Opt. Lett.

Proc. SPIE

G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002).
[CrossRef]

M. S. Scholl, “Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors,” Proc. SPIE 2730, 572–575 (1995).

G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).

M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007).
[CrossRef]

G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003).
[CrossRef]

Rev. Sci. Instrum.

G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004).
[CrossRef]

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999).
[CrossRef]

L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006).
[CrossRef]

V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000).
[CrossRef]

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Sens. Actuators A Phys.

D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007).
[CrossRef]

Sens. Mater.

E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer-Verlag, 1999).

R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” in Selected Papers on Semiconductor Infrared Detectors, A.Rogalski, ed., SPIE Milestone Series (1992), Vol. MS66, pp. 13–20.

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

J. P. Holman, Heat Transfer (McGraw-Hill, 1997).

M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.

M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies (Elsevier, 2002).

M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds. (Marcel Dekker, 2001), Chap. 18, pp. 649–699.

T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints (Springer, 2005).

B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).

M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.

M. Kleinerman, “Infrared image converter,” U.S. patent 3,639,765 (1 February 1972).

A. Merla and G. L. Romani, “Functional infrared imaging: new approaches and applications of thermal imaging to medicine,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp, 417–423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Proposed fluorescence-based converter. The EuTTA fluorescence emission P ( t , T ) is modified by the change in temperature T F ( T ) caused by absorbed thermal radiation. The fluorescence radiation is detected by a visible detection device, and the signal voltage V ( t , T ) is related to the temperature of the object. (b) Block diagram describing the mechanism of conversion at the fluorescent film. The diagram refers to the gray-shaded region in (a).

Fig. 2
Fig. 2

Simplified energy level diagram of EuTTA. The ligand absorbs UV energy, resulting in a S 0 to S 1 transition. This energy is transferred to the Eu 3 + levels via a triplet state Γ of the molecule. (a) In the absence of impinging thermal radiation, relaxation occurs through the D 5 0 to F 2 7 transition at 615 nm . (b) When incident thermal radiation changes the thermal state of EuTTA, nonradiative processes quench the emission of the Eu 3 + ion.

Fig. 3
Fig. 3

Implemented experimental layout for characterization of the EuTTA temperature-dependent fluorescence. Radiation emitted by the thermal radiation source is focused over the EuTTA film in order to vary the film temperature, T F . The photodetector measures the emitted fluorescence power of the film as a function of time.

Fig. 4
Fig. 4

Experimental relation between film and thermal source temperatures, T F ( T ) and T, respectively. After measuring EuTTA fluorescence parameters as functions of T F , this relation may determine the corresponding temperature of the thermal source.

Fig. 5
Fig. 5

(a) Measured power as a function of time for various film temperatures T F , in logarithmic scale. (b) Double exponential behavior of the power decay curves. This behavior may be overlooked when using the integral functional for the analysis.

Fig. 6
Fig. 6

Theoretical fitting and experimental data as a function of temperature for (a) fluorescence amplitude power P 0 ( T F ) and (b) decay time constant τ ( T F ) . At higher temperatures, the magnitudes of both parameters decrease monotonically. P 0 ( T F ) and τ ( T F ) are related to the temperature of EuTTA material, which is locally increased due to the absorption of thermal radiation impinging on the sensing element.

Fig. 7
Fig. 7

Decay curves and integral functional for two representative film temperatures. The area under each curve is the integral functional that holds information about the variations of amplitude power and lifetime of the fluorescence. As both parameters decrease monotonically with temperature increments, I P ( T F ) adds the change effect, improving thermal resolution. The difference in I P ( T F ) between both curves is the darkest area.

Fig. 8
Fig. 8

Functional values and theoretical linear fitting to the data as a function of film temperature. After measuring the magnitude of I P ( T F ) , this function determines the value of T F . The derivative (i.e., sensitivity) of the functional equals 25 nJ / K .

Fig. 9
Fig. 9

(a) Physical and (b) equivalent thermal circuit for one- dimensional heat flow through a pixel of the sensing element. The characteristic thermal time constant of the converter is determined by τ T = C eq / G eq , where C eq and G eq are determined from the specific values of thermal capacity and thermal conductance of each layer of the sensing element. While an optimized thermal design of the sensing element ensures a feasible τ T , the characterized lifetime assures that EuTTA can be used for dynamic thermal-to-visible conversion.

Tables (1)

Tables Icon

Table 1 Figures of Merit of EuTTA Fluorescence Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( t , T F ) = P 0 ( T F ) exp [ t τ ( T F ) ] + P 1 [ W ] ,
P ( t , T F ) = P 01 exp ( t τ 1 ) + P 02 exp ( t τ 2 ) [ W ] .
I P ( T F ) = t 0 t 1 P ( t , T F ) d t [ J ] ,
S P 0 ( T F ) = d P 0 ( T F ) d T F [ W K ] , S τ ( T F ) = d τ ( T F ) d T F [ μs K ] , S I P ( T F ) = d I P ( T F ) d T F [ J K ] .
Δ T F min = σ S ( T F ) [ K ] .

Metrics