Abstract

A pulsed, distributed feedback (DFB) quantum cascade (QC) laser centered at 970cm1 was used in combination with an off-axis cavity enhanced absorption (CEA) spectroscopic technique for the detection of ammonia and ethylene. Here, the laser is coupled into a high-finesse cavity with an optical path length of 76m. The cavity is installed into a 53cm long sample cell with a volume of 0.12L. The laser is excited with short current pulses (510ns), and the pulse amplitude is modulated with an external current ramp, resulting in a 0.3cm1 frequency scan. A demodulation approach followed by numerical filtering was utilized to improve the signal-to-noise ratio. We demonstrated detection limits of ~15 ppb and 20ppb for ammonia and ethylene, respectively, with less than 5s averaging time.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  2. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.
  3. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
    [CrossRef] [PubMed]
  4. G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
    [CrossRef]
  5. M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
    [PubMed]
  6. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
    [CrossRef]
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
    [CrossRef] [PubMed]
  8. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
    [CrossRef]
  9. A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.
  10. M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.
  11. J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
    [CrossRef]
  12. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [CrossRef]
  13. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
    [CrossRef]
  14. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
    [CrossRef]
  15. O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
    [CrossRef]
  16. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
    [CrossRef] [PubMed]
  17. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
    [PubMed]
  18. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
    [CrossRef]
  19. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998).
    [CrossRef]
  20. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).
  21. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
    [CrossRef] [PubMed]
  22. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [CrossRef]
  23. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
    [CrossRef]
  24. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [CrossRef]
  25. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

2006 (2)

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
[CrossRef] [PubMed]

2005 (3)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

2004 (2)

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

2002 (4)

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

2001 (3)

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

1999 (1)

1998 (3)

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

1994 (1)

J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Allen, M. G.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
[PubMed]

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Baillargeon, J. N.

Bakhirkin, Y. A.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

Beck, M.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Bonetti, Y.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Cai, S.

Capasso, F.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Cho, A. Y.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Curl, R. F.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

Duxbury, G.

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Faist, J.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Gmachl, C.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Goodman, W.

L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
[CrossRef] [PubMed]

Hensley, M.

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

Herndon, S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

Hofstetter, D.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Holler, F. J.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

Hutchinson, A. L.

Jager, W.

J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
[CrossRef] [PubMed]

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Kohler, R.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Kosterev, A.

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Kosterev, A. A.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

Langford, N.

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.

Lytkine, A.

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

Malinovsky, A. L.

Manne, J.

J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
[CrossRef] [PubMed]

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

Mazurenka, M.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

McCulloch, M.

M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.

McCulloch, M. T.

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

McManus, B.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

McManus, J. B.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Menzel, L.

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

Mueller, A.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Namjou, K.

Narasimhan, L. R.

L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
[CrossRef] [PubMed]

Nelson, D. D.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Nieman, T. A.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

Normand, E.

M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.

Normand, E. L.

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

O’Keefe, A.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

Oakes, D. B.

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

Orr-Ewing, A. J.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Patel, C. K. N.

L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
[CrossRef] [PubMed]

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Peverall, R.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

Rawlins, W. T.

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

Ritchie, G. A. D.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

Roller, C.

Rosen, D. I.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
[PubMed]

Shorter, J. H.

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Silva, M. L.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
[PubMed]

Sivco, D. L.

Sivo, D. L.

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Skoog, D. A.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

Sonnenfroh, D. M.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
[PubMed]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

Sukhorukov, O.

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
[CrossRef] [PubMed]

Tittel, F. K.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Tulip, J.

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006).
[CrossRef] [PubMed]

Urban, W.

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

Urbanski, S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

Walker, S.

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

Wehe, S.

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

Whittaker, E. A.

Zahniser, M. S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. (1)

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001).
[CrossRef] [PubMed]

Proc. SPIE (3)

J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002).
[CrossRef]

O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006).
[CrossRef]

G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Science (1)

J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Spectrochim. Acta, Part A, Mol. Spectrosc. (1)

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004).
[CrossRef]

Other (6)

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4.
[PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.

M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4.
[PubMed]

A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.

M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental arrangement of the off-axis cavity enhanced absorption spectroscopy based gas sensor. QC Laser: pulsed quantum cascade laser mounted in an air-tight housing. TC, temperature controller; L 1 , L 2 ; focusing and collimating lens, respectively. M 1 , M 2 , high reflectivity front and back mirrors, respectively; LN 2 MCT, liquid nitrogen cooled mercury cadmium telluride detector.

Fig. 2
Fig. 2

Cavity mode spacing for a 53 cm cavity ( FSR = 0.01 cm 1 ). The laser linewidth determined by the frequency chirp is 0.02 cm 1 . The measured absorption features have linewidths in the 0.05 0.2 cm 1 range, depending on the sample pressure.

Fig. 3
Fig. 3

(a) Detector response (after demodulation) during application of a current ramp to the laser. (b) Detector response showing optical fringes after the laser beam passes through the Ge etalon.

Fig. 4
Fig. 4

Off-axis CEA as a function of CO 2 concentration in a N 2 / CO 2 mixture.

Fig. 5
Fig. 5

Ammonia spectrum recorded with the CEA spectrometer (solid line) at a cell pressure of 5 torr . Also shown is the simulated data from the HITRAN database (dashed line) for comparison.

Fig. 6
Fig. 6

Ammonia spectra measured at various concentrations of ammonia in the gas flow, at a cell pressure of 200 torr .

Fig. 7
Fig. 7

Ammonia spectrum recorded at a concentration of 15 ppb with the CEA spectrometer (solid line with dots). Also shown is the digitally filtered data (solid line).

Fig. 8
Fig. 8

Ethylene spectrum recorded with the CEA spectrometer (solid line) at a cell pressure of 200 torr . Also shown is the data plotted from Pacific Northwest National Laboratory database (dashed line) for comparison.

Fig. 9
Fig. 9

Ethylene spectra measured at various concentrations of ethylene in the gas flow, at a cell pressure of 200 torr .

Fig. 10
Fig. 10

Ethylene spectrum recorded at a concentration of 20 ppb with the CEA spectrometer (solid line with dots), at a cell pressure of 200 torr . Also shown is the digitally filtered data (solid line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I o C p ( 1 R ) 2 2 [ ( 1 R ) + k L ] ,
I I o = 1 R 2 ( 1 k L 1 R ) .
P eff = L 1 R eff ,
A = k L ( 1 R eff ) + k L .

Metrics