Abstract

We study the interrelation of the internal field of irregular particles to the far-field scattering characteristics by modifying the internal field of dipole groups. In this paper, we concentrate on the longitudinal component, i.e., the internal-field component parallel to the incident wave vector. We use the discrete-dipole approximation to determine the internal field and switch off the longitudinal component from the dipoles that have the highest energy density above a preset cutoff value. We conclude that only a relatively small number of core dipoles, about 5% of all dipoles, contribute to the negative linear polarization at intermediate scattering angles. These core dipole groups are located at the forward part of the particles. The number of core dipoles in the group becomes greater as particle asphericity increases. We find that the interference between the scattered waves from the core dipole groups, which was studied previously for spherical particles, is preserved to a large extent for nonspherical particles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999).
    [CrossRef]
  2. E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
    [CrossRef]
  3. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  5. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  6. E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
    [CrossRef]
  7. E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
    [CrossRef]
  8. O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
    [CrossRef]
  9. H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
    [CrossRef]
  10. O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
    [CrossRef]
  11. K. F. Ren, “Symmetry relations in generalized Lorentz–Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).
    [CrossRef]
  12. J. F. Owen, R. K. Chang, and P. W. Barber, “Internal electric field distributions of a dielectric cylinder at resonance wavelengths,” Opt. Lett. 6, 540–542 (1981).
    [CrossRef] [PubMed]
  13. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [CrossRef] [PubMed]
  14. J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. 19, 2429–2435 (2002).
    [CrossRef]
  15. L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004).
    [CrossRef]
  16. C. Li, G. W. Kattawar, and P.-W. Zhai, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554–4559 (2005).
    [CrossRef] [PubMed]
  17. J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
    [CrossRef]
  18. H. J. Visser, Array and Phased Array Antenna Basics(Wiley, 2005).
    [CrossRef]
  19. K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
    [CrossRef]
  20. M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “A reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).
    [CrossRef]
  21. M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010).
    [CrossRef]
  22. J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
    [CrossRef]
  23. E. Zubko, Yu. G. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering and negative polarization of agglomerate particles,” Opt. Lett. 28, 1504–1506 (2003).
    [CrossRef] [PubMed]
  24. K. Muinonen, “Light scattering by stochastically shaped particles,” in Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory (1989), pp. 428–430.
  25. E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
    [CrossRef]
  26. E. Zubko, D. Petrov, Yu. G. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479–6485 (2005).
    [CrossRef] [PubMed]
  27. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [CrossRef]
  28. B. T. Draine, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703(2008).
    [CrossRef]
  29. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).
    [CrossRef]
  30. E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
    [CrossRef] [PubMed]

2010

2009

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

2008

2007

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

2006

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

2005

2004

L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004).
[CrossRef]

2003

2002

J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. 19, 2429–2435 (2002).
[CrossRef]

2001

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

2000

E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
[CrossRef]

1999

P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999).
[CrossRef]

1994

1987

1981

1974

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Astafyeva, L. G.

L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004).
[CrossRef]

Babenko, V. A.

L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004).
[CrossRef]

Barber, P. W.

Barton, J. P.

J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. 19, 2429–2435 (2002).
[CrossRef]

Benincasa, D. S.

Berg, M. J.

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010).
[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “A reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Chakrabarti, A.

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010).
[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “A reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).
[CrossRef]

Chang, R. K.

de Haan, J. F.

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

Draine, B. T.

Eversole, J.

Grynko, Y.

Hanner, M. S.

P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999).
[CrossRef]

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hart, M.

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).
[CrossRef]

Hovenier, J.

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

Hovenier, J. W.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Hsieh, W.-F.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jalava, J. P.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Jockers, K.

E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
[CrossRef]

Kattawar, G. W.

Kimura, H.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

Kiselev, N.

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

Kiselev, N. N.

E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
[CrossRef]

Li, C.

Maltsev, V. P.

Min, M.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Muinonen, K.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
[CrossRef]

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

K. Muinonen, “Light scattering by stochastically shaped particles,” in Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory (1989), pp. 428–430.

Muñoz, O.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

Nousiainen, T.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

Okamoto, H.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

Owen, J. F.

Petrov, D.

Petrova, E. V.

E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
[CrossRef]

Ren, K. F.

Shkuratov, Yu. G.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

E. Zubko, D. Petrov, Yu. G. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479–6485 (2005).
[CrossRef] [PubMed]

E. Zubko, Yu. G. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering and negative polarization of agglomerate particles,” Opt. Lett. 28, 1504–1506 (2003).
[CrossRef] [PubMed]

Sorensen, C. M.

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010).
[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “A reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).
[CrossRef]

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Tyynelä, J.

J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

van der Zande, W. J.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Vassen, W.

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

Videen, G.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
[CrossRef]

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

E. Zubko, D. Petrov, Yu. G. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479–6485 (2005).
[CrossRef] [PubMed]

E. Zubko, Yu. G. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering and negative polarization of agglomerate particles,” Opt. Lett. 28, 1504–1506 (2003).
[CrossRef] [PubMed]

Visser, H. J.

H. J. Visser, Array and Phased Array Antenna Basics(Wiley, 2005).
[CrossRef]

Volten, H.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

Waters, L. B. F. M.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Yamamoto, T.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

Yanamandra-Fisher, P. A.

P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).
[CrossRef]

Zhai, P.-W.

Zhang, J.-Z.

Zubko, E.

E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010).
[CrossRef] [PubMed]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

E. Zubko, D. Petrov, Yu. G. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479–6485 (2005).
[CrossRef] [PubMed]

E. Zubko, Yu. G. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering and negative polarization of agglomerate particles,” Opt. Lett. 28, 1504–1506 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Astron. Astrophys.

O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006).
[CrossRef]

Icarus

P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999).
[CrossRef]

E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000).
[CrossRef]

J. Geophys. Res.

O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001).
[CrossRef]

H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. 19, 2429–2435 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010).
[CrossRef]

J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007).
[CrossRef]

E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009).
[CrossRef]

J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007).
[CrossRef]

L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006).
[CrossRef]

E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006).
[CrossRef]

Opt. Express

Opt. Lett.

Space Sci. Rev.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

H. J. Visser, Array and Phased Array Antenna Basics(Wiley, 2005).
[CrossRef]

K. Muinonen, “Light scattering by stochastically shaped particles,” in Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory (1989), pp. 428–430.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Laboratory measurements of the degree of linear polarization by Muñoz et al. [10] from rutile particles (circles) and numerical computations of agglomerated debris particles (solid curve) with the size parameter of the circumscribing sphere being x cs = 20 and the refractive index of m = 1.7 .

Fig. 2
Fig. 2

Longitudinal energy density of the core dipoles. (a) Gaussian-random-sphere particle, m = 1.5 + i 0.01 . (b) Gaussian-random-sphere particle, m = 1.5 + i 0.1 . (c) Agglomerated debris particle, m = 1.5 + i 0.01 . (d) Agglomerated debris particle, m = 1.5 + i 0.1 . The cutoff value is 30%. The core dipoles are shown in a black-red color-scale with the brightest dipoles being red, while the noncore dipoles are shown as slightly transparent. The size parameter is x cs = 12 . The incident field is X polarized. Symbols may be overlapping.

Fig. 3
Fig. 3

Total intensity for the Gaussian-random-sphere and agglomerated debris particles with the exact solution (thin curve) and when switching off the longitudinal component from core dipoles (thick curve), noncore dipoles (dashed curve), and random dipoles (dashed–dotted curve). The cutoff value is 30%, the size parameter is x cs = 12 , and the refractive index is m = 1.5 + i 0.01 for the left figures and m = 1.5 + i 0.1 for the right figures.

Fig. 4
Fig. 4

Degree of linear polarization for the Gaussian-random-sphere particle with the exact solution (thin curve) and when switching off the longitudinal component from core dipoles (thick curve), noncore dipoles (dashed curve), and random dipoles (dashed–dotted curve). The different cutoff values are 10% (a), 30% (b), 50% (c), and 90% (d). The size parameter is x cs = 12 , the refractive index is m = 1.5 + i 0.01 , and the standard deviation of radius is ρ = 0.245 .

Fig. 5
Fig. 5

Same as in Fig. 4, but for the refractive index m = 1.5 + i 0.1 .

Fig. 6
Fig. 6

Same as in Fig. 4, but for the agglomerated debris particle.

Fig. 7
Fig. 7

Same as in Fig. 5, but for the agglomerated debris particle.

Fig. 8
Fig. 8

Degree of linear polarization with the exact solution (thin curve), and when switching off the longitudinal component for the core dipoles for both incident polarizations (thick curve), when switching off for Y-polarized incident field only (dashed–dotted curve), and when switching off for the X-polarized incident field only (dashed curve). (a) Spherical particle, m = 1.5 + i 0.01 . (b) Spherical particle, m = 1.5 + i 0.1 . (c) Gaussian-random-sphere particle, m = 1.5 + i 0.01 . (d) Gaussian-random-sphere particle, m = 1.5 + i 0.1 . (e) Agglomerated debris particle, m = 1.5 + i 0.01 . (f) Agglomerated debris particle, m = 1.5 + i 0.1 . The cutoff value is 30%. The size parameter is x cs = 12 . Notice that some curves may be overlapping.

Fig. 9
Fig. 9

Far-field energy-density contributions of the longitudinal component at a 90 ° scattering angle. (a) Spherical particle, incident field X polarized. (b) Spherical particle, incident field Y polarized. (c) Gaussian-random-sphere particle, incident field X polarized. (d) Gaussian-random-sphere particle, incident field Y polarized. (e) Agglomerated debris particle, incident field X polarized. (f) Agglomerated debris particle, incident field Y polarized. Particles are in fixed orientation in the Y Z plane. The mapping is not a cross section, but it shows results integrated over the X dimension. At the top of each figure, we show the intensity contributions integrated along both the X and Y axes of the particle. Similarly, at the right of each figure, we show the intensity contributions integrated along the X and Z axes. The refractive index is m = 1.5 + i 0.01 . The incident wave is propagating from left to right.

Tables (1)

Tables Icon

Table 1 Fraction of Core Dipoles from All Dipoles as a Function of the Longitudinal Energy-Density Cutoff Value for Gaussian-Random-Sphere and Agglomerated Debris Particles

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( I sca Q sca U sca V sca ) = σ sca 4 π r 2 ( P 11 P 12 0 0 P 12 P 22 0 0 0 0 P 33 P 34 0 0 P 34 P 44 ) ( I inc Q inc U inc V inc ) ,
I = E E * + E E * = I + I , Q = E E * E E * = I I , U = E E * + E E * , V = i ( E E * E E * ) ,
r ( ϑ , φ ) e r = a exp [ s ( ϑ , φ ) ] 1 + σ 2 e r , s ( ϑ , φ ) = l = 0 m = l l s l m Y l m ( ϑ , φ ) ,
x = D ˜ x cs ( 1 + σ 2 ) ,
E i = E i inc + j = 1 , i j N T i j β j E j , j = 1 , 2 , , N ,
T i j = u i j 1 + v i j e i j e i j ,
u i j = e i ρ i j ρ i j 3 ( ρ i j 2 + i ρ i j 1 ) , v i j = e i ρ i j ρ i j 3 ( ρ i j 2 i 3 ρ i j + 3 ) , ρ i j = k | r i r j | , e i j = r i r j | r i r j | ,
β LDR = β CM 1 + β CM d 3 [ ( b 1 + m 2 b 2 + m 2 b 3 S ) k 2 d 2 2 3 i k 3 d 3 ] β CM = 3 d 2 4 π m 2 1 m 2 + 2 b 1 = 1.8915316 , b 2 = 0.1648469 , b 3 = 1.7700004 S = 1 k 2 E 0 2 ( k x 2 E 0 , x 2 + k y 2 E 0 , y 2 + k z 2 E 0 , z 2 ) ,
| m | k d < 0.5 ,
cutoff = 100 · i = 1 M E long , i * E long , i i = 1 N E long , i * E long , i ,

Metrics