Abstract

For optical data storage applications, it is essential to determine the lowest intensity (also known as threshold intensity) below or at which no data page or grating can be recorded in the photosensitive material, as this in turn determines the data capacity of the material. Here, experiments were carried out to determine the threshold intensity below which the formation of a simple hologram—a holographic diffraction grating in a green-sensitized acrylamide-based photopolymer—is not possible. Two main parameters of the recording layers—dye concentration and thickness—were varied to study the influence of the density of the generated free radicals on the holographic properties of these layers. It was observed that a minimum concentration per unit volume of free radicals is required for efficient cross-linking of the created polymer chains and for recording a hologram. The threshold intensity below which no hologram can be recorded in the Erythrosin B sensitized layers with absorbance less than 0.16 was 50μW/cm2. The real-time diffraction efficiency was analyzed in the early stage of recording. It was determined that the minimum intensity required to obtain diffraction efficiency of 1% was 90μW/cm2, and the minimum required exposure was 8mJ/cm2. It was also determined that there is an optimum dye concentration of 1.5×107 mol/L for effective recording above which no increase in the sensitivity of the layers is observed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
    [CrossRef]
  2. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  3. J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [CrossRef] [PubMed]
  4. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  5. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
    [CrossRef]
  6. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449–463 (2001).
    [CrossRef]
  7. U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]
  8. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]
  9. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
    [CrossRef]
  10. M. Ortuno, S. Gallego, C. Garcia, C. Neipp, and I. Pascual, “Holographic characteristics of a 1mm-thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
    [CrossRef] [PubMed]
  11. M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
    [CrossRef] [PubMed]
  12. M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
    [CrossRef]
  13. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  14. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
    [CrossRef]
  15. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
    [CrossRef]
  16. M. D. Goodner, and C. N. Bowman, “Development of a comprehensive free radical photo-polymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
    [CrossRef]
  17. G.Odian, ed. Principles of Polymerization (McGraw-Hill, 1970), Chap. 3.
  18. C. Croutxé-Barghorn and D. J. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811–825 (1996).
    [CrossRef]
  19. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  20. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
    [CrossRef]
  21. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
    [CrossRef] [PubMed]
  22. G. Zhao and P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  23. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
    [CrossRef] [PubMed]
  24. V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  25. S. Piazzolla and B. Jenkins, “First harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  26. J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt. 27, 1967–1976 (1988).
    [CrossRef] [PubMed]
  27. L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
    [CrossRef] [PubMed]
  28. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  29. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
    [CrossRef]
  30. S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
    [CrossRef]
  31. M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
    [CrossRef]

2010 (1)

2009 (1)

2008 (2)

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
[CrossRef]

2006 (3)

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

2005 (1)

2004 (2)

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (4)

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner, and C. N. Bowman, “Development of a comprehensive free radical photo-polymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

2001 (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449–463 (2001).
[CrossRef]

2000 (2)

1999 (1)

1997 (2)

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1996 (2)

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef] [PubMed]

C. Croutxé-Barghorn and D. J. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811–825 (1996).
[CrossRef]

1994 (1)

G. Zhao and P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1993 (1)

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

1988 (1)

1973 (1)

1971 (1)

1969 (2)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Babeva, T.

Bowman, C. N.

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner, and C. N. Bowman, “Development of a comprehensive free radical photo-polymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

Boyd, J. E.

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Caputo, R.

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

Caulfield, H. J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Cescato, L.

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Colburn, W. S.

Colvin, V.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Colvin, V. L.

Croutxé-Barghorn, C.

C. Croutxé-Barghorn and D. J. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811–825 (1996).
[CrossRef]

De Luca, A.

De Sio, L.

Eichler, H. J.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Feely, C. A.

Frejlich, J.

Frohmann, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Gallego, S.

Garcia, C.

Gleeson, M. R.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner, and C. N. Bowman, “Development of a comprehensive free radical photo-polymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

Haines, K. A.

Harris, A.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Howard, R.

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

Hwang, H. C.

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Jallapuram, R.

M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
[CrossRef] [PubMed]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

Jenkins, B.

Kaminow, I. P.

Kelly, J. V.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kwon, J. H.

Larson, R.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449–463 (2001).
[CrossRef]

Lion, Y.

Liu, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Lougnot, D. J.

C. Croutxé-Barghorn and D. J. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811–825 (1996).
[CrossRef]

Mackey, D.

Mahmud, M. S.

M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
[CrossRef] [PubMed]

M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
[CrossRef]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Martin, S.

Mcclung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Mendes, G. F.

Mirsalehi, M. M.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Moran, J. M.

Moreau, V.

Mourolis, P.

G. Zhao and P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Naydenova, I.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
[CrossRef] [PubMed]

M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
[CrossRef]

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

Neipp, C.

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O’Neill, F. T.

Orlic, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Ortuno, M.

Pandey, N.

Pascual, I.

Piazzolla, S.

Psaltis, D.

Pu, A.

Renotte, Y.

Rhee, U. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Schilling, M.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Shamir, J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Sheridan, J. T.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449–463 (2001).
[CrossRef]

Sukhov, A. V.

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

Toal, V.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
[CrossRef] [PubMed]

M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
[CrossRef]

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

Trentler, T. J.

Umeton, C.

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

Vega-Cantu, Y. I.

Veltri, A.

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

Vikram, C. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Wahi, R. K.

Woo, K. C.

Zhao, G.

G. Zhao and P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Opt. (11)

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
[CrossRef] [PubMed]

J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
[CrossRef] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef] [PubMed]

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
[CrossRef]

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, and I. Pascual, “Holographic characteristics of a 1mm-thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers-thickness limitations,” Appl. Opt. 48, 2642–2648 (2009).
[CrossRef] [PubMed]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt. 27, 1967–1976 (1988).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721–3727 (2006).
[CrossRef] [PubMed]

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. Mcclung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Eng. Sci. (2)

M. D. Goodner, and C. N. Bowman, “Development of a comprehensive free radical photo-polymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

J. Appl. Phys. (2)

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. Mod. Opt. (1)

G. Zhao and P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A Pure Appl. Opt. 10, 085007 (2008).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Eng. (1)

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du-Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Opt. Mater. (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Optik (Jena) (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449–463 (2001).
[CrossRef]

Proc. SPIE (1)

S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 625205 (2006).
[CrossRef]

Pure Appl. Opt. (1)

C. Croutxé-Barghorn and D. J. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811–825 (1996).
[CrossRef]

Other (1)

G.Odian, ed. Principles of Polymerization (McGraw-Hill, 1970), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: N, variable neutral density filter; S, shutter; BE, beam expander; BS, beam splitter; M, mirror; D, optical power meter. He Ne laser ( 633 nm ) is used for monitoring diffraction efficiency during recording.

Fig. 2
Fig. 2

DE versus exposure time for absorbances (a), (b) 0.025, (c), (d) 0.065, (e), (f) 0.11, and (g), (h) 0.16 for layer thicknesses, (▪) 100, (○) 200, (▴) 250, and (*) 350 μm at recording intensities of 0.08 and 0.7 mW / cm 2 .

Fig. 3
Fig. 3

Required exposure time to obtain DE of 1% versus recording intensity for layer thicknesses, (▪) 100, (○) 200, (▴) 250, and (*) 350 μm and absorbances (0.025, 0.065, 0.11, 0.16).

Fig. 4
Fig. 4

Exposure for achieving 1% DE versus Intensity for different layer thicknesses, (▪) 100, (○) 200, (▴) 250, and (*) 350 μm and absorbances (0.025, 0.065, 0.11, and 0.16). The top axis of each of these graphs represents the absorbed intensity, I a ( x ) = I ( x ) × ( 1 e A ) .

Fig. 5
Fig. 5

Exposure needed to obtain 1% DE as a function of dye concentration.

Fig. 6
Fig. 6

DE versus Intensity for layer thicknesses of (▪) 100, (○) 200, (▴) 250, and (*) 350 μm at exposure energy, 10 mJ / cm 2 .

Fig. 7
Fig. 7

Dependence of the intensity required for obtaining 1% DE on the dye concentration.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Initiation : ( i ) P I h ν R * , R R = d R * d t = 2 Φ I a ( x ) = 2 Φ I ( x ) [ 1 exp ( ε c x ) ] ;
( i i ) R * + M i k i M i * , R I = d M i * d t = k i [ R * ] [ M ] ;
Propagation : M i * + M k p M i + 1 * , R P = k p [ M i * ] [ M ] ;
Termination : M i * + M i * k t polymer , R T = d M t * d t = k t [ M i * ] 2 ,
[ M ] t = R I + R P ,

Metrics