Abstract

We develop an analytic model to describe the dynamic average thermal distortion and phase difference between the two principal polarizations in side-pumped Nd:YAG and Nd:glass heat capacity rod lasers. It can be predicted that the average thermal distortion is proportional to the temperature profile on the cross section from the analytic expression and, therefore, it is feasible to measure the temperature profile by wavefront sensing. In addition, temperature-dependent variation of the refractive index constitutes the major contribution of the thermal lensing for Nd:YAG rod lasers. Temperature- and stress-dependent variation of the refractive index constitute the major contributions of the thermal lensing for Nd:glass rod lasers. In the case of the same pumping and cooling conditions, there are the same orders of depolarization loss for Nd-doped YAG, LG-680, LG-750, LG-760, and LG-770 glass rod lasers.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Thermal modeling of solid nonfocusing pump-light collectors used for diode-pumped Nd:YAG lasers

Stuart D. Jackson and James A. Piper
Appl. Opt. 34(12) 2012-2023 (1995)

Shack-Hartmann wavefront sensor measurement for dynamic temperature profiles in heat-capacity laser rods

Xiaobo Wang, Xiaojun Xu, Qisheng Lu, and Fengjie Xi
Appl. Opt. 46(15) 2963-2968 (2007)

Revising the formula of thermal focal length in a side-pumped laser rod by experiments

Xiaobo Wang, Xiaojun Xu, Xiao Li, and Qisheng Lu
Appl. Opt. 46(22) 5237-5240 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription