Abstract

We present a novel method for remote sensing of crosswind using a passive imaging device, such as a video recorder. The method is based on spatial and temporal correlations of the intensity fluctuations of a naturally illuminated scene induced by atmospheric turbulence. Adaptable spatial filtering, taking into account variations of the dominant spatial scales of the turbulence (due to changes in meteorological conditions, such as turbulence strength, or imaging device performance, such as frame rate or spatial resolution), is incorporated into this method. Experimental comparison with independent wind measurement using anemometers shows good agreement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  2. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere, Vol. 25 of Topics in Applied Physics (Springer-Verlag, 1978)..
  3. B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
    [CrossRef]
  4. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light beam,” Appl. Opt. 11, 239–243 (1972).
    [CrossRef] [PubMed]
  5. T. Wang, G. R. Ochs, and R. S. Lawrence, “Wind measurements by the temporal cross-correlation of the optical scintillations,” Appl. Opt. 20, 4073–4081 (1981).
    [CrossRef] [PubMed]
  6. L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
    [CrossRef]
  7. V. A. Banakh, D. A. Marakasov, and M. A. Vorontsov, “Cross-wind profiling based on the scattered wave scintillations in a telescope focus,” Appl. Opt. 46, 8104–8117 (2007).
    [CrossRef] [PubMed]
  8. J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
    [CrossRef]
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  10. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
    [CrossRef]
  11. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. AI-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417–1429 (1999).
    [CrossRef]
  12. A. lshimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.
  13. F. G. Smith, Atmospheric propagation of radiation, in The Infrared and Electro-Optical Systems Handbook (SPIE Press, 1993), Vol. 2, pp. 176–201.
  14. V. Tatarski, I. A. Ishimaru, and V. U. Zavorotny, Wave Propagation in Random Media (Scintillation) (SPIE and Institute of Physics, 1993).
  15. S. F. Clifford, G. R. Ochs, and T. Wang, “Optical wind sensing by observing the scintillations of a random scene,” Appl. Opt. 14, 2844–2850 (1975).
    [PubMed]
  16. D. L. Walters, “Passive remote crosswind sensor,” Appl. Opt. 16, 2625–2626 (1977).
    [CrossRef] [PubMed]
  17. R. B. Holmes, “Passive optical wind profilometer,” U.S. patent 5,469,250 (21 November 1995).
  18. A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
    [CrossRef]
  19. S. Zamek and Y. Yitzhaky, “Turbulence strength estimation from an arbitrary set of atmospherically degraded images,” J. Opt. Soc. Am. A 23, 3106–3113 (2006).
    [CrossRef]

2010

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

2007

2006

A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
[CrossRef]

S. Zamek and Y. Yitzhaky, “Turbulence strength estimation from an arbitrary set of atmospherically degraded images,” J. Opt. Soc. Am. A 23, 3106–3113 (2006).
[CrossRef]

2000

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

1999

1981

1977

1975

1972

1950

B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
[CrossRef]

AI-Habash, M. A.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. AI-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417–1429 (1999).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Banakh, V. A.

Berdja, A.

A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
[CrossRef]

Borgnino, J.

A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
[CrossRef]

Briggs, B. H.

B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
[CrossRef]

Clifford, S. F.

Engel, A.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Furger, M.

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

Glick, Y.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Graber, W. K.

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

Heflinger, D.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Holmes, R. B.

R. B. Holmes, “Passive optical wind profilometer,” U.S. patent 5,469,250 (21 November 1995).

Hopen, C. Y.

Irbah, A.

A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
[CrossRef]

Ishimaru, I. A.

V. Tatarski, I. A. Ishimaru, and V. U. Zavorotny, Wave Propagation in Random Media (Scintillation) (SPIE and Institute of Physics, 1993).

Lawrence, R. S.

Livneh, M.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

lshimaru, A.

A. lshimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

Marakasov, D. A.

Ochs, G. R.

Phillips, J.

B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. AI-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417–1429 (1999).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Poggio, L. P.

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

Porat, O.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Prevot, A. S. H.

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

Shapira, J.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Shinn, D. H.

B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
[CrossRef]

Smith, F. G.

F. G. Smith, Atmospheric propagation of radiation, in The Infrared and Electro-Optical Systems Handbook (SPIE Press, 1993), Vol. 2, pp. 176–201.

Strohbehn, J. W.

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere, Vol. 25 of Topics in Applied Physics (Springer-Verlag, 1978)..

Tatarski, V.

V. Tatarski, I. A. Ishimaru, and V. U. Zavorotny, Wave Propagation in Random Media (Scintillation) (SPIE and Institute of Physics, 1993).

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

Vorontsov, M. A.

Walters, D. L.

Wang, T.

Wies, Z.

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Yitzhaky, Y.

Zamek, S.

Zavorotny, V. U.

V. Tatarski, I. A. Ishimaru, and V. U. Zavorotny, Wave Propagation in Random Media (Scintillation) (SPIE and Institute of Physics, 1993).

Appl. Opt.

J. Atmos. Ocean. Technol.

L. P. Poggio, M. Furger, A. S. H. Prevot, and W. K. Graber, “Scintillometer wind measurements over complex terrain,” J. Atmos. Ocean. Technol. 17, 17–26 (2000).
[CrossRef]

J. Opt. A Pure Appl. Opt.

A. Berdja, J. Borgnino, and A. Irbah, “Fresnel diffraction and polychromatic effects on angle-of-arrival fluctuations,” J. Opt. A Pure Appl. Opt. 8, 244–251 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Proc. Phys. Soc. London

B. H. Briggs, J. Phillips, and D. H. Shinn, “The analysis of observation on spaced receivers of the fading of radio signals,” Proc. Phys. Soc. London 63, 106–121 (1950).
[CrossRef]

Proc. SPIE

J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, Y. Glick, and A. Engel, “Atmospheric cross-wind and turbulence measurements using turbulence—induced scintillations,” Proc. SPIE 768476841L (2010).
[CrossRef]

Other

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere, Vol. 25 of Topics in Applied Physics (Springer-Verlag, 1978)..

A. lshimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

F. G. Smith, Atmospheric propagation of radiation, in The Infrared and Electro-Optical Systems Handbook (SPIE Press, 1993), Vol. 2, pp. 176–201.

V. Tatarski, I. A. Ishimaru, and V. U. Zavorotny, Wave Propagation in Random Media (Scintillation) (SPIE and Institute of Physics, 1993).

R. B. Holmes, “Passive optical wind profilometer,” U.S. patent 5,469,250 (21 November 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Effect of polychromatic light on the strength of phase fluctuations, based on the Berdja model and the Kolmogorov spectrum. The Y axis represents the ratio between the phase structure function in the polychromatic case and the phase structure function in the monochromatic case. The results are for the polychromatic model with the quasi-Gaussian weighting function [Eq. (4)], with λ 0 = 500 nm and full width at half-maximum (FWHM) of 300 nm .

Fig. 2
Fig. 2

Temporal cross correlation of fluctuations measured in two pixels of an imaging system with the spacing between the pixels as a parameter. X axis measured in units of the time difference between consecutive frames, where Δ T = 1 frame equals 30 ms . As the spacing grows, the function drifts to the right— compatible with the expected drift of the fluctuation with the crosswind measured by anemometers at the same time. Calculation is over 250 frames.

Fig. 3
Fig. 3

Spatial cross correlation of fluctuations measured in two pixels of an imaging system with time delay between the signals as a parameter—the dependence of the two symmetric components Δ T = ± 1 frames (equals time delay of ± 30 ms ) of Fig. 2 on the spacing between pixels. There is a pronounced rising in the direction compatible with the crosswind direction at the time of measurement.

Fig. 4
Fig. 4

Spatial cross correlation of fluctuations measured in two pixels of an imaging system with time delay between the signals as a parameter—the dependence of the components Δ T = 1 8 frames (time delay of one frame equals 7 ms ) on the spacing between pixels. There is a linear growth of the spacing that maximizes the function as time delay between the signals grows.

Fig. 5
Fig. 5

View of the setup of the first field experiment from the measurement point. From left to right: black–white striped contrast objects (at 270, 530, and 800 m ) and a wind anemometer (at 270 m ).

Fig. 6
Fig. 6

Average wind (black curve) and crosswind (white curve) values measured during the first field experiment. Average is calculated over time ( 60 s ) and over space (three anemometers located in three different places along the line of sight). Crosswind direction is perpendicular to the scene line of sight, approximately west–east direction.

Fig. 7
Fig. 7

Average index of refraction structure parameter values measured during the first field experiment. Average is calculated over 15 s .

Fig. 8
Fig. 8

Comparison of average crosswinds measured by the anemometers (black) and crosswind estimations from the recorded videos of the two cameras (white symbols) during the first field experiment. Average is calculated over time (over 60 s ) and over space (three anemometers located in three different places along the line of sight). Crosswind direction is perpendicular to the scene line of sight, approximately west–east direction.

Fig. 9
Fig. 9

Comparison of average crosswinds measured by the anemometer (black) and crosswind estimations from the recorded videos during the second field experiment. Average is calculated over time ( 60 s ) and over space (five anemometers located in five different places along the line of sight). Crosswind direction is perpendicular to the scene line of sight, approximately west–east direction. The perpendicular line distinguishes between the two different sessions.

Tables (4)

Tables Icon

Table 1 Parameters of the Imaging Systems Used during the Field Experiments

Tables Icon

Table 2 Value of C n 2 in Each of the Turbulence Domains Used for Data Processing

Tables Icon

Table 3 Results of Linear Fit of the Estimated Cross-Correlation Displacement and the Average Wind Reference Measurement

Tables Icon

Table 4 Statistics of the Comparison of Crosswind Measurements by the Anemometers and the Estimation from the Image Sequences, during the Second Field Experiment

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D S ( ρ , L ) = 8 π 2 0 L d z 0 d K { K [ 1 J o ( K ρ z L ) ] × H S ( L z , K , L ) ϕ n ( K , z ) } ,
H S ( L z , K , L ) = [ K cos ( K 2 z ( L z ) 2 K L ) ] 2 .
D S ( ρ , L ) = { 1.24 C n 2 q 2 L l o 1 / 3 ρ 2 ρ l o 1.09 C n 2 q 2 L ρ 5 / 3 l o ρ L o ,
F ( λ ) = λ λ o 1 2 π σ λ 2 exp [ ( λ λ o ) 2 2 σ λ 2 ] ,
ρ o = { ( 0.62 C n 2 q 2 L l o 1 / 3 ) 1 / 2 ρ o l o ( 0.55 C n 2 q 2 L ) 3 / 5 l o ρ o L o .
B S ( ρ , τ , L ) = 4 π 2 0 L d z 0 d K { K J o [ K ( ρ z L v τ ) ] × H S ( L z , K , L ) ϕ n ( K , z ) } ,
v = k ( f , L , IFOV ) · Δ S [ pixels ] .

Metrics