Abstract

A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all- optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Elfaramawy and A. Award, “All-optical logic circuits based on the non-linear properties of the semiconductor optical amplifier,” in Ninth IEEE Symposium on Computers and Communications 2004 (IEEE, 2004), Vol. 1, pp. 270–275.
  2. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef] [PubMed]
  3. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
    [CrossRef]
  4. G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
    [CrossRef]
  5. R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
    [CrossRef]
  6. K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
    [CrossRef]
  7. T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004).
    [CrossRef]
  8. I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).
  9. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
    [CrossRef]
  10. I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
    [CrossRef]
  11. H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
    [CrossRef]
  12. K. L. Hall and B. S. Robinson, “Bit error rate characterization of 100 Gb/s all optical demultiplexers,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 214–215.
  13. A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000).
    [CrossRef]
  14. V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
    [CrossRef]
  15. M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
    [CrossRef]
  16. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
    [CrossRef]
  17. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
    [CrossRef] [PubMed]
  18. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
    [CrossRef]
  19. M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
    [CrossRef] [PubMed]
  20. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
    [CrossRef]
  21. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielson, N. Chi, P. Jeppesen, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, “IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops,” J. Lightwave Technol. 23, 2993–3011 (2005).
    [CrossRef]
  22. S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
    [CrossRef] [PubMed]
  23. S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
    [CrossRef]
  24. N. L. Hoang, J. S. Cho, Y. H. Won, and Y. D. Jeong, “All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry-Perot laser diodes,” Opt. Express 15, 5166–5171 (2007).
    [CrossRef] [PubMed]
  25. R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photonics Technol. Lett. 17, 843–845 (2005).
    [CrossRef]
  26. K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16, 11405–10 (2008).
    [CrossRef] [PubMed]
  27. M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).
  28. A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
    [CrossRef]
  29. J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
    [CrossRef]
  30. H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
    [CrossRef]
  31. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
    [CrossRef]
  32. N. A. Whitaker, Jr., M. C. Gabriel, H. Avramopoulos, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 16, 1999–2001 (1991).
    [CrossRef] [PubMed]
  33. N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
    [CrossRef]
  34. A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
    [CrossRef]
  35. T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003).
    [CrossRef]
  36. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989).
    [CrossRef]
  37. K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
    [CrossRef]
  38. K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
    [CrossRef]
  39. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998).
    [CrossRef]
  40. B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002).
    [PubMed]
  41. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
    [CrossRef]
  42. Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339–10344 (2006).
    [CrossRef] [PubMed]
  43. T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010).
    [CrossRef]
  44. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
    [CrossRef]
  45. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
    [CrossRef]
  46. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998).
    [CrossRef]
  47. L. Wen, P. Zuo, J. Wu, and J. Lin, “Optimizing the perforation of TOAD by changing the wavelength and power of the control pulse,” Chin. Opt. Lett. 1, 503–512 (2003).
  48. H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.
  49. K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
    [CrossRef]
  50. C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.
  51. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chap. 6, Sect. 6.12.
  52. J. Gowar, Optical Communication System, 2nd ed. (Prentice-Hall, 1993), Chap. 23.
  53. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
    [CrossRef]
  54. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap 7.
  55. N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
    [CrossRef]
  56. F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000).
    [CrossRef]
  57. G. P. AgrawalApplications of Nonlinear Fiber Optics(Academic, 2001).
  58. H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005).
    [CrossRef]
  59. A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).
  60. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
    [CrossRef]
  61. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
    [CrossRef]
  62. R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
    [CrossRef]
  63. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, Y. Watanabe, Y. Sugimoto, and K. Asakawa, “Sequential operations of quantum dot/ photonic crystal all-optical switch with high repetitive frequency pumping,” J. Lightwave Technol. 27, 1241–1247 (2009).
    [CrossRef]
  64. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
    [CrossRef]

2010 (3)

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
[CrossRef]

T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010).
[CrossRef]

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

2009 (3)

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, Y. Watanabe, Y. Sugimoto, and K. Asakawa, “Sequential operations of quantum dot/ photonic crystal all-optical switch with high repetitive frequency pumping,” J. Lightwave Technol. 27, 1241–1247 (2009).
[CrossRef]

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
[CrossRef]

2008 (3)

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16, 11405–10 (2008).
[CrossRef] [PubMed]

N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
[CrossRef]

H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
[CrossRef]

2007 (3)

H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
[CrossRef]

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

N. L. Hoang, J. S. Cho, Y. H. Won, and Y. D. Jeong, “All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry-Perot laser diodes,” Opt. Express 15, 5166–5171 (2007).
[CrossRef] [PubMed]

2006 (3)

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339–10344 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004).
[CrossRef]

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

2003 (6)

L. Wen, P. Zuo, J. Wu, and J. Lin, “Optimizing the perforation of TOAD by changing the wavelength and power of the control pulse,” Chin. Opt. Lett. 1, 503–512 (2003).

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003).
[CrossRef]

2002 (2)

B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002).
[PubMed]

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

2001 (3)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).

2000 (3)

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000).
[CrossRef]

F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000).
[CrossRef]

1999 (1)

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

1998 (4)

K. Obermann, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998).
[CrossRef]

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
[CrossRef]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998).
[CrossRef]

1997 (2)

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
[CrossRef]

1995 (2)

M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
[CrossRef]

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

1994 (1)

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

1993 (2)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
[CrossRef]

1991 (1)

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989).
[CrossRef]

1988 (1)

Ackerman, D. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Agrawal, G. P.

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
[CrossRef]

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989).
[CrossRef]

G. P. AgrawalApplications of Nonlinear Fiber Optics(Academic, 2001).

Asakawa, K.

Avramopoulos, H.

Award, A.

N. Elfaramawy and A. Award, “All-optical logic circuits based on the non-linear properties of the semiconductor optical amplifier,” in Ninth IEEE Symposium on Computers and Communications 2004 (IEEE, 2004), Vol. 1, pp. 270–275.

Baby, V.

Baets, R.

Barman, A. D.

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Bergano, N. S.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
[CrossRef]

Berrettini, G.

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

Besse, P. A.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Blow, K. J.

N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
[CrossRef]

A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000).
[CrossRef]

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
[CrossRef]

Bogoni, A.

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Botsiaris, C.

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
[CrossRef]

Bouchoule, S.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Breuer, D.

Burrus, C.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Chasioti, R.

K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
[CrossRef]

Chattopadhyay, T.

T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010).
[CrossRef]

Chen, H.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Cheung, C. Y.

C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.

Chi, N.

Cho, J. S.

Clavero, R.

Colle, D.

Contestabile, G.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Cooper, S. L.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Davidson, C. R.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
[CrossRef]

de Vries, T.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

de Waardt, H.

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

Decker, A.

C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.

den Besten, J. H.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Dentai, A. G.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Doran, N. J.

Dorren, H. J. S.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielson, N. Chi, P. Jeppesen, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, “IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops,” J. Lightwave Technol. 23, 2993–3011 (2005).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Dreyer, K.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Düelk, M.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Dutta, N. K.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Eiselt, M.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Elfaramawy, N.

N. Elfaramawy and A. Award, “All-optical logic circuits based on the non-linear properties of the semiconductor optical amplifier,” in Ninth IEEE Symposium on Computers and Communications 2004 (IEEE, 2004), Vol. 1, pp. 270–275.

Ellis, A. D.

Forrest, S. R.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

Fresi, F.

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Friedman, M.

Gabriel, M. C.

Gamper, E.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Ghanemlooy, Z.

H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.

Ghassemlooy, Z.

H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
[CrossRef]

H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
[CrossRef]

C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.

Ghayour, R.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

Gini, E.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Girardin, F.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
[CrossRef]

Glesk, I.

Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339–10344 (2006).
[CrossRef] [PubMed]

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002).
[PubMed]

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Gowar, J.

J. Gowar, Optical Communication System, 2nd ed. (Prentice-Hall, 1993), Chap. 23.

Gross, M. C.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Guekos, G.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
[CrossRef]

Hall, K. L.

K. L. Hall and B. S. Robinson, “Bit error rate characterization of 100 Gb/s all optical demultiplexers,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 214–215.

Harrison, J. A.

N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
[CrossRef]

Hess, R.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Hoang, N. L.

Holm-Nielson, P. V.

Houbavlis, A.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
[CrossRef]

Houbavlis, T.

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
[CrossRef]

T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004).
[CrossRef]

T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003).
[CrossRef]

Huang, A.

Huang, Y. K.

Huybrechts, K.

Ikeda, N.

Inoharra, R.

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

Jabbari, M.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

Jaques, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Jeong, Y. D.

Jeppesen, P.

Jepsen, K. S.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Johnson, N. C.

N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
[CrossRef]

Joyner, C. H.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Ju, H.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

Kalyvas, M.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Kanellos, G. T.

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

Kaplan, A. M.

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
[CrossRef]

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
[CrossRef]

Kauer, M.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Kawanishi, S.

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

Kehayas, E.

Kelly, A. E.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Kerfoot, F. W.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
[CrossRef]

Khoe, G. D.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Kindt, S.

Kitagawa, Y.

Kitayama, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Koukorlis, C. S.

K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
[CrossRef]

Koukourlis, C. S.

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Lenstra, D.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Leuthold, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Li, C.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

Li, Y.

Li, Z.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef] [PubMed]

Lin, J.

H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005).
[CrossRef]

L. Wen, P. Zuo, J. Wu, and J. Lin, “Optimizing the perforation of TOAD by changing the wavelength and power of the control pulse,” Chin. Opt. Lett. 1, 503–512 (2003).

Liu, Y.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef] [PubMed]

F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielson, N. Chi, P. Jeppesen, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, “IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops,” J. Lightwave Technol. 23, 2993–3011 (2005).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Manning, R. J.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
[CrossRef]

Marti, J.

Martinez, J. M.

Maruta, A.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Matera, F.

F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000).
[CrossRef]

Maywar, D. N.

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
[CrossRef]

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
[CrossRef]

Melchior, H.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Meloni, G.

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

Menon, V. M.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

Mikkelsen, B.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Minh, H. L.

H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
[CrossRef]

H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.

Minh, H. Le.

H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
[CrossRef]

Moravvej-Farshi, M. K.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

Morioka, T.

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

Morito, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Morthier, G.

Ng, W. P.

H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
[CrossRef]

H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
[CrossRef]

H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.

Ngah, R.

H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.

Nishimura, K.

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

Obermann, K.

Occhi, L.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Ohtsubo, J.

M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989).
[CrossRef]

Ozaki, N.

Papadopoulos, G.

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

Petermann, K.

Piccirilli, A. B.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Pickavet, M.

Pieper, W.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Pleumeekers, J. L.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Potì, L.

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Potti, L.

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

Poustie, A. J.

A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000).
[CrossRef]

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
[CrossRef]

Prucnal, P. R.

Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339–10344 (2006).
[CrossRef] [PubMed]

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002).
[PubMed]

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Ramos, F.

Riposati, B.

Robinson, B. S.

K. L. Hall and B. S. Robinson, “Bit error rate characterization of 100 Gb/s all optical demultiplexers,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 214–215.

Runser, R. J.

Saruwatari, M.

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

Schares, L.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

Schmidt, C.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

Schneider, T.

T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chap. 6, Sect. 6.12.

Schubert, C.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

Sekiguchi, S.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Sengupta, I.

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Settembre, M.

F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000).
[CrossRef]

Shankar, R.

Shirakawa, M.

M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
[CrossRef]

Shore, K. A.

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998).
[CrossRef]

Shunk, S.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Smalbrugge, E.

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Sokoloff, J. P.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Stampoulidis, L.

Stubkjaer, K. E.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Sugawara, M.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

Sugimoto, Y.

Swift, G.

C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.

Takara, H.

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

Takata, Y.

Takemori, T.

M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
[CrossRef]

Tang, J. M.

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998).
[CrossRef]

Thomas, G. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Tong, W.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002).
[PubMed]

Tsiokos, D.

Tsurusawa, M.

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

Uchiyama, K.

K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997).
[CrossRef]

Usami, M.

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

Vaa, M.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Van Caenegem, R.

Van Zantvoort, J. H. C.

Vogt, W.

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

Wang, B. C.

Wang, H.

H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005).
[CrossRef]

Wang, J.

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

Wang, Q.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Watanabe, Y.

Weber, H. G.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Wen, L.

Whitaker, N. A.

Won, Y. H.

Wood, D.

Wu, J.

H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005).
[CrossRef]

L. Wen, P. Zuo, J. Wu, and J. Lin, “Optimizing the perforation of TOAD by changing the wavelength and power of the control pulse,” Chin. Opt. Lett. 1, 503–512 (2003).

Xia, F.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

Xu, L.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap 7.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap 7.

Zarifkar, A.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

Zhang, J.

Zhang, S.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef] [PubMed]

Zhu, G.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Zoiros, K. E.

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
[CrossRef]

T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004).
[CrossRef]

T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003).
[CrossRef]

K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
[CrossRef]

Zuo, P.

Acta Phys. Slovaca (1)

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).

Chin. Opt. Lett. (1)

Electron. Lett. (2)

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009).
[CrossRef]

IEEE Commun. Lett. (1)

H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008).
[CrossRef]

IEEE J. Quantum Electron. (6)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003).
[CrossRef]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000).
[CrossRef]

J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141.
[CrossRef]

IEEE Photonics Technol Lett. (1)

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (9)

R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003).
[CrossRef]

N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998).
[CrossRef]

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010).
[CrossRef]

A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010).
[CrossRef]

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photonics Technol. Lett. 17, 843–845 (2005).
[CrossRef]

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003).
[CrossRef]

R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001).
[CrossRef]

Nature (1)

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209.
[CrossRef] [PubMed]

Opt. Commun. (7)

M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995).
[CrossRef]

A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000).
[CrossRef]

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006).
[CrossRef]

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005).
[CrossRef]

N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008).
[CrossRef]

Opt. Eng. (3)

H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007).
[CrossRef]

K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006).
[CrossRef]

T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004).
[CrossRef]

Opt. Express (5)

Opt. Laser Technol. (1)

T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (2)

T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003).
[CrossRef]

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004).
[CrossRef]

Phys. Today (1)

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

World Acad. Sci. Eng. Technol. (1)

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).

Other (10)

N. Elfaramawy and A. Award, “All-optical logic circuits based on the non-linear properties of the semiconductor optical amplifier,” in Ninth IEEE Symposium on Computers and Communications 2004 (IEEE, 2004), Vol. 1, pp. 270–275.

K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274.
[CrossRef]

K. L. Hall and B. S. Robinson, “Bit error rate characterization of 100 Gb/s all optical demultiplexers,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 214–215.

C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.

T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chap. 6, Sect. 6.12.

J. Gowar, Optical Communication System, 2nd ed. (Prentice-Hall, 1993), Chap. 23.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap 7.

H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.

G. P. AgrawalApplications of Nonlinear Fiber Optics(Academic, 2001).

A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Physical model of the all-optical clocked DFF using a single TOAD-based interferometric switch: CP, control pulse; PSM, partially silvered mirror; PBS, polarizing beam splitter; 3 d B , (ideally 50 50 ) 2 × 2 3 dB coupler.

Fig. 2
Fig. 2

Operation of the proposed clocked DFF: comblike symbol, partially silvered mirror (PSM); open triangle, data input from “D”; solid triangle, control pulse; striped triangle, reflected data by PSM.

Fig. 3
Fig. 3

Simulation block diagram with relevant system parameters and equation numbers.

Fig. 4
Fig. 4

Simulated waveform of the output Q n + 1 with the corresponding input D = " 1 1 0 0 0 1 1 0 0 0 " and CLK = " 1 0 0 1 0 0 1 0 0 1 " .

Fig. 5
Fig. 5

Variation of average output power with time delay ( t d ) with a control pulse, i.e., CLK = ON .

Fig. 6
Fig. 6

Simulated DFF output “pseudo-eye- diagram” (PED).

Fig. 7
Fig. 7

Variation of relative eye opening (O) in % with the eccentricity of the loop of the TOAD (T) in ps.

Fig. 8
Fig. 8

Variation of BER and Q value with the eccentricity of the loop of the TOAD (T) in ps.

Fig. 9
Fig. 9

Variation of CR, ER, AM, and SNR in dB with eccentricity of the loop of the TOAD (T) in ps.

Fig. 10
Fig. 10

Variation cross talk (XT) against eccentricity of the loop (T) in ps.

Tables (2)

Tables Icon

Table 1 Truth Tables of Clocked DFF

Tables Icon

Table 2 Parameters Used in Simulation

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E sat = ω 0 w d a N Γ ,
G 0 = exp [ g 0 L α D L ] ,
g 0 = Γ a N N tr ( I τ e q w d L N tr 1 ) ,
P out ( t ) = P in ( t ) exp [ h ( t ) ] ,
φ out ( t ) = φ in ( t ) 1 2 a N h ( t ) ,
d h ( t ) d t = g 0 L h ( t ) τ e P in ( t ) E sat { exp [ h ( t ) ] 1 } .
h ( t ) = ln [ 1 ( 1 1 G 0 ) exp ( E cp ( t ) E sat ) ] .
G ( t ) = exp [ h ( t ) ] .
G ( t ) = G 0 [ G ( t s ) G 0 ] exp [ ( t t s ) / τ e ] t t s ,
G ( t ) = { 1 ( 1 1 / G l ) exp [ E cp ( t ) / E sat ] } 1 .
E cp ( t ) = E c 2 [ 1 + erf ( t σ ) ] ,
G f = G ( t s ) = G l G l ( G l 1 ) exp ( E c / E sat ) .
G l = G ( ξ ) = G 0 [ G f G 0 ] exp { ( ξ T FWHM ) / τ e } .
G ccw G cw = [ G f G 0 ] { exp [ ( t + T t s ) / τ e ] exp [ ( t t s ) / τ e ] } ,
P T ( t ) = P in ( t ) 4 { G cw ( t ) + G ccw ( t ) 2 G cw ( t ) G ccw ( t ) cos ( Δ φ ) } ,
P R ( t ) = P in ( t ) 4 { G cw ( t ) + G ccw ( t ) + 2 G cw ( t ) G ccw ( t ) cos ( Δ φ ) } ,
P Q n + 1 ( t ) | D = CLK = 1 = 1 2 P T ( t ) | I P = P 1 ,
P Q n + 1 ( t ) | D = 1 , CLK = 0 = 1 2 P T ( t ) | I P = P 1 + 1 2 P R ( t ) | I P = P 2 ,
P Q n + 1 ( t ) | D = CLK = 0 = 1 2 P R ( t ) | I P = P 2 ,
P Q n + 1 ( t ) | D = 0 , CLK = 1 = P Q n ( t ) | D = CLK = 0 ,
P Q n + 1 ( t ) | D = 1 , CLK = 0 = 1 2 P T ( t ) | I P = P 1 + P Q n ( t ) | D = 0 , CLK = 1 ,
σ < T < 0.5 ξ < τ e < 1.5 ξ .
P av _ TP ( t d ) = 1 ξ ξ / 2 + ξ / 2 P T ( t , t d ) d t .
O = P min 1 P max 0 P min 1 ,
BER = 1 2 erfc ( Q 2 ) ,
Q = P 1 P 0 δ 1 + δ 0 .
SNR = P 1 2 δ 1 2 .
CR ( dB ) = 10 log ( P mean 1 P mean 0 ) .
AM ( dB ) = 10 log ( P max 1 P min 1 ) ,
ER ( dB ) = 10 log ( P min 1 P max 0 ) ,
XT = 10 log ( P nt P t ) .

Metrics