Abstract

Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.14GHz, 30GHz, 0.51.8THz, and in the visible and near-infrared region (400nm1600nm). We report high birefringence (Δn=0.190.395) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozokido, “Refractive index of nematic liquid crystals in the submillimeter wave region,” Appl. Opt. 36, 6383–6387 (1997).
    [CrossRef]
  2. H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
    [CrossRef]
  3. C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
    [CrossRef]
  4. Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
    [CrossRef]
  5. F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004).
    [CrossRef]
  6. T. Nose, M. Honma, T. Nozokido, and K. Mizuno, “Simple method for the determination of refractive indices and loss parameters for liquid-crystal materials in the millimeter-wave region,” Appl. Opt. 44, 1150–1155 (2005).
    [CrossRef] [PubMed]
  7. F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
    [CrossRef]
  8. H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
    [CrossRef]
  9. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
    [CrossRef]
  10. I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008).
    [CrossRef] [PubMed]
  11. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
    [CrossRef] [PubMed]
  12. T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
    [CrossRef]
  13. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
    [CrossRef]
  14. S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.
  15. F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).
  16. S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
    [CrossRef]
  17. S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
    [CrossRef]
  18. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
    [CrossRef]
  19. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
    [CrossRef]
  20. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
    [CrossRef] [PubMed]
  21. E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
    [CrossRef]
  22. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
    [CrossRef] [PubMed]
  23. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915(1984).
    [CrossRef] [PubMed]
  24. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
    [CrossRef]
  25. K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
    [CrossRef]
  26. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
    [CrossRef]
  27. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1998).
    [CrossRef]

2009 (3)

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

2008 (4)

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
[CrossRef] [PubMed]

I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008).
[CrossRef] [PubMed]

2007 (3)

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
[CrossRef] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

2006 (1)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

2005 (2)

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

T. Nose, M. Honma, T. Nozokido, and K. Mizuno, “Simple method for the determination of refractive indices and loss parameters for liquid-crystal materials in the millimeter-wave region,” Appl. Opt. 44, 1150–1155 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

2003 (4)

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
[CrossRef]

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

1998 (1)

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1998).
[CrossRef]

1997 (1)

1993 (1)

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

1984 (1)

Bae, J.

Best, P.

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Chen, C.-Y.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

Chen, L. F.

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

Collings, N.

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

Crossland, W. A.

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

Dambrowski, R.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Damm, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

Day, G. M.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Efron, U.

Frišcic´, T.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Fujikake, H.

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

Gaebler, A.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

Gauza, S.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Gladden, L. F.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Goebel, M.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

Goelden, F.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

Gordon, K. C.

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Haase, W.

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

Hasek, T.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

Hendry, E.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Hess, L. D.

Ho, I.-C.

Hock, C.

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

Honma, M.

Hsieh, C.-F.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008).
[CrossRef] [PubMed]

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
[CrossRef] [PubMed]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

Isaac, T. H.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Jakoby, R.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

Jewell, S. A.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Jones, W.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Kamei, T.

Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
[CrossRef]

Kamoda, H.

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

Koch, M.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
[CrossRef] [PubMed]

Kopschinski, O.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

Kuki, T.

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

Lackner, A. M.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Lai, Y.-C.

Lapanik, A.

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

Lim, K. C.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Lin, Y.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

Lussem, G.

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Manabe, A.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

Margerum, J. D.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Miller, L. J.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Mizuno, K.

Mueller, S.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

Muller, S.

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Naito, R.

Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
[CrossRef]

Neo, C. P.

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

Newnham, D. A.

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Nomoto, T.

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

Nose, T.

Nozokido, T.

Ong, C. K.

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

Pan, C.-L.

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
[CrossRef] [PubMed]

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008).
[CrossRef] [PubMed]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

Pan, R.-P.

I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008).
[CrossRef] [PubMed]

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
[CrossRef] [PubMed]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

Parrott, E. P. J.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Penirschke, A.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

Pepper, M.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Pupeza, I.

Rades, T.

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Sambles, J. R.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004).
[CrossRef]

Sato, F.

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

Sato, S.

Scheele, P.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

Seed, A. J.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Sherman, E.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Smith, W. H. J.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Taday, P. F.

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

Trushkevych, O.

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

Tsai, T.-R.

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

Utsumi, Y.

Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
[CrossRef]

Varadan, V. K.

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

Varadan, V. V.

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

Vieweg, N.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

Wang, H.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Weil, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Wen, C.-H.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Wilk, R.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
[CrossRef] [PubMed]

Wittek, M.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

Wu, S.-T.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1998).
[CrossRef]

S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915(1984).
[CrossRef] [PubMed]

Xu, H.

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004).
[CrossRef]

Zeitler, J. A.

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Zhang, X.-C.

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003).
[CrossRef]

F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004).
[CrossRef]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

Cryst. Growth Design (1)

E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009).
[CrossRef]

Electron. Lett. (2)

C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003).
[CrossRef]

Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005).
[CrossRef]

J. Appl. Phys. (2)

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1998).
[CrossRef]

J. Infrared Millim. Waves (1)

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009).
[CrossRef]

J. Pharm. Pharmacol. (1)

J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Liq. Cryst. (1)

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009).
[CrossRef]

Nat. Photon. (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

New J. Phys. (1)

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (4)

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004).
[CrossRef]

S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.

F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).

F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Frequency-dependent ordinary and extraordinary (a) refractive indices and (b) absorption coefficients in liquid crystal LCMS-107 at 0.1 4 GHz .

Fig. 2
Fig. 2

Frequency-dependent ordinary and extraordinary (a) refractive indices and (b) absorption coefficients in liquid crystal LCMS-107 at 30 GHz and 0.5 1.8 THz (absorption at 30 GHz was measured as dielectric loss ε and converted to absorption coefficient).

Fig. 3
Fig. 3

Absorption in liquid crystal LCMS-107 in the near IR and visible.

Tables (1)

Tables Icon

Table 1 Refractive Indices, Birefringence, and Absorption Values at Different Frequencies and Wavelengths in Liquid Crystal LCMS-107

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| δ | = N π + 2 tan 1 I I | | , N = 0 , 2 , 4 , ,
| δ | = ( N + 1 ) π 2 tan 1 I I | | , N = 1 , 3 , 5 , .
α = 4 π f n k c , k = ε 2 n ,

Metrics