Abstract

A new, improved design of an all-optical flip flop is proposed. The waveguiding layer of the device consists of a phase-shifted nonlinear grating. The grating layers of a high refractive index have a negative nonlinear coefficient. A phase-shift section exists at the middle of the waveguiding layer. The optical gain is provided by current injection into an active layer. Nonlinearity in the waveguiding layer is achieved by direct absorption at the edge of the absorption band (Urbach tail). In the “OFF” state, the waveguiding layer forms a weak grating with an optical feedback below the laser threshold. In the “ON” state, the device functions as a distributed feedback (DFB) laser due to an induced strong grating in the nonlinear waveguiding layer. The improvements of the device performance by reducing the set pulse energy and accelerating the switch-off process are discussed. Field simulations in the time domain were performed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
    [CrossRef]
  2. R. Clavero, J. Martnez, F. Ramos, and J. Mart, “All-optical packet routing scheme for optical label-swapping networks,” Opt. Express 12, 4326–4332 (2004).
    [CrossRef] [PubMed]
  3. S. J. B. Yoo, “Optical packet and burst switching technologies for future photonic internet,” J. Lightwave Technol. 24, 4468–4492 (2006).
    [CrossRef]
  4. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
    [CrossRef]
  5. N. Hoang, J. Cho, Y. Won, and Y. Jeong, “All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry–Perot laser diodes,” Opt. Express 15, 5166–5171 (2007).
    [CrossRef] [PubMed]
  6. J. Oksanena and J. Tulkki, “Fast coherent all-optical flip-flop memory,” Appl. Phys. Lett. 88, 181118 (2006).
    [CrossRef]
  7. K. Huybrechts, G. Morthier, and R. Baet, “Fast all optical flip-flop based on a single Distributed Feedback laser Diode,” Opt. Express 16, 11405–11410 (2008).
    [CrossRef] [PubMed]
  8. H. Zoweil and A. Kashyout, “All-optical flip-flop based on a nonlinear DFB semiconductor laser: theoretical study,” Opt. Commun. 283, 474–479 (2010).
    [CrossRef]
  9. J. Carrol, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
    [CrossRef]
  10. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2004).
  11. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
    [CrossRef]
  12. H. Haug, ed., Optical Nonlinearities and Instabilities in Semiconductor (Academic, 1988).
  13. T. H. Keil, “Theory of the Urbach rule,” Phys. Rev. 144, 582–587 (1966).
    [CrossRef]
  14. J. Dow and D. Redfield, “Toward a unified theory of Urbach’s rule and exponential absorption edges,” Phys. Rev. B 5, 594–610 (1972).
    [CrossRef]
  15. S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, 2004).

2010 (2)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

H. Zoweil and A. Kashyout, “All-optical flip-flop based on a nonlinear DFB semiconductor laser: theoretical study,” Opt. Commun. 283, 474–479 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

J. Oksanena and J. Tulkki, “Fast coherent all-optical flip-flop memory,” Appl. Phys. Lett. 88, 181118 (2006).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for future photonic internet,” J. Lightwave Technol. 24, 4468–4492 (2006).
[CrossRef]

2004 (1)

2003 (1)

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

1972 (1)

J. Dow and D. Redfield, “Toward a unified theory of Urbach’s rule and exponential absorption edges,” Phys. Rev. B 5, 594–610 (1972).
[CrossRef]

1966 (1)

T. H. Keil, “Theory of the Urbach rule,” Phys. Rev. 144, 582–587 (1966).
[CrossRef]

Adachi, S.

S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, 2004).

Alamo, J. A. D.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Baet, R.

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Calabretta, N.

Carrol, J.

J. Carrol, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Cho, J.

Clavero, R.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

de Waardt, H.

Dorren, H. J. S.

Dow, J.

J. Dow and D. Redfield, “Toward a unified theory of Urbach’s rule and exponential absorption edges,” Phys. Rev. B 5, 594–610 (1972).
[CrossRef]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Ghafouri-Shiraz, H.

H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2004).

Haug, H.

H. Haug, ed., Optical Nonlinearities and Instabilities in Semiconductor (Academic, 1988).

Hill, M. T.

Hoang, N.

Huijskens, F. M.

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

K. Huybrechts, G. Morthier, and R. Baet, “Fast all optical flip-flop based on a single Distributed Feedback laser Diode,” Opt. Express 16, 11405–11410 (2008).
[CrossRef] [PubMed]

Jeong, Y.

Kashyout, A.

H. Zoweil and A. Kashyout, “All-optical flip-flop based on a nonlinear DFB semiconductor laser: theoretical study,” Opt. Commun. 283, 474–479 (2010).
[CrossRef]

Keil, T. H.

T. H. Keil, “Theory of the Urbach rule,” Phys. Rev. 144, 582–587 (1966).
[CrossRef]

Khoe, G. D.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Liu, Y.

Mart, J.

Martnez, J.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

K. Huybrechts, G. Morthier, and R. Baet, “Fast all optical flip-flop based on a single Distributed Feedback laser Diode,” Opt. Express 16, 11405–11410 (2008).
[CrossRef] [PubMed]

Oksanena, J.

J. Oksanena and J. Tulkki, “Fast coherent all-optical flip-flop memory,” Appl. Phys. Lett. 88, 181118 (2006).
[CrossRef]

Plumb, D.

J. Carrol, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Ramos, F.

Redfield, D.

J. Dow and D. Redfield, “Toward a unified theory of Urbach’s rule and exponential absorption edges,” Phys. Rev. B 5, 594–610 (1972).
[CrossRef]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Srivatsa, A.

Thourhout, D. V.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Tulkki, J.

J. Oksanena and J. Tulkki, “Fast coherent all-optical flip-flop memory,” Appl. Phys. Lett. 88, 181118 (2006).
[CrossRef]

Whiteaway, J.

J. Carrol, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Won, Y.

Yoo, S. J. B.

Zoweil, H.

H. Zoweil and A. Kashyout, “All-optical flip-flop based on a nonlinear DFB semiconductor laser: theoretical study,” Opt. Commun. 283, 474–479 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

J. Oksanena and J. Tulkki, “Fast coherent all-optical flip-flop memory,” Appl. Phys. Lett. 88, 181118 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photon. (1)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Opt. Commun. (1)

H. Zoweil and A. Kashyout, “All-optical flip-flop based on a nonlinear DFB semiconductor laser: theoretical study,” Opt. Commun. 283, 474–479 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

T. H. Keil, “Theory of the Urbach rule,” Phys. Rev. 144, 582–587 (1966).
[CrossRef]

Phys. Rev. B (1)

J. Dow and D. Redfield, “Toward a unified theory of Urbach’s rule and exponential absorption edges,” Phys. Rev. B 5, 594–610 (1972).
[CrossRef]

Other (4)

S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, 2004).

H. Haug, ed., Optical Nonlinearities and Instabilities in Semiconductor (Academic, 1988).

J. Carrol, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) All-optical flip flop introduced in Ref. [8], (b) proposed flip flop.

Fig. 2
Fig. 2

Set pulse (a), set pulse (b), reset pulse, and Urbach tail versus incident photon energy.

Fig. 3
Fig. 3

Refractive index distribution in the waveguiding layer.

Fig. 4
Fig. 4

Current (in ampere)/output optical power hysteresis loop.

Fig. 5
Fig. 5

Optical output power in (a) “OFF” state, (b) “ON” state.

Fig. 6
Fig. 6

Input optical set pulse power.

Fig. 7
Fig. 7

Free carrier distribution N car at (a) z = L / 2 , (b) z = 0 , and N g at (c) z = 0 , (d) z = L / 2 .

Fig. 8
Fig. 8

Set and reset pulse.

Fig. 9
Fig. 9

Output optical power after set and reset pulses.

Fig. 10
Fig. 10

Free carrier distribution after set and reset pulses; N car at (a) z = L / 2 , (b) z = 0 , and N g at (c) z = 0 , (d) z = L / 2 .

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i E + z + i n ¯ c E + t = ( Γ 1 + i g 2 ( 1 i γ ) i α cav 2 ) E + e i ϕ ( z ) i 2 δ β z ( K + Γ 2 ) E ,
i E z + i n ¯ c E t = ( Γ 1 + i g 2 ( 1 i γ ) i α cav 2 ) E e i ϕ ( z ) + i 2 δ β z ( K + Γ 2 ) E +
Γ 1 = 2 π λ G ( ( δ n δ N car ) ( 1 i ξ ) N car ) i α 4 ,
Γ 2 = 4 λ G ( δ n δ N car ) ( 1 i ξ ) N car i α 2 π ,
N car t = N car τ car B N car 2 C N car 3 + α I int ω ,
N g t = I eV N g τ B N g 2 C N g 3 v g Θ g S ,
g = g ˜ ( N g N gtr ) 1 + ϵ S ,

Metrics