Abstract

We present a semianalytic pulsed coherent laser radar (CLR) equation for coaxial and apertured systems. It combines the conventional CLR equation, numerical Fresnel integration (NFI), and nearest Gaussian approximation, using correction factors that correspond to beam truncation. The range dependence of the signal-to-noise ratio obtained by this semianalytic equation was found to agree well with the precise NFI solution for not only the focal range, but also the near-field range. Furthermore, the optimum beam truncation condition depending on the atmospheric refractive index structure constant is shown. The derived equation is useful for precisely predicting the CLR performance simply by its semianalytic expression.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  2. J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
    [CrossRef]
  3. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  4. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, “Coherent laser radar at 1.06µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  5. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  6. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002).
    [CrossRef] [PubMed]
  7. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
    [CrossRef] [PubMed]
  8. A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
    [CrossRef]
  9. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1µm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  10. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  11. R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
    [CrossRef]
  12. J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
    [CrossRef]
  13. J. W. Bilbro, C. Dimarzio, D. Fitzjarrald, S. Johnson, and W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
    [CrossRef] [PubMed]
  14. R. Frehlich, “Velocity error for coherent Doppler lidar with pulse accumulation,” J. Atmos. Oceanic Tech. 21, 905–920(2004).
    [CrossRef]
  15. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
    [CrossRef]
  16. C. M. Sonnenschein and F. A. Horrigan, “Signal-to noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604(1971).
    [CrossRef] [PubMed]
  17. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [CrossRef] [PubMed]
  18. P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
    [CrossRef]
  19. Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: theory,” Appl. Opt. 29, 4111–4119 (1990).
    [CrossRef] [PubMed]
  20. B. J. Rye and R. G. Frehlich, “Optimal truncation and optical efficiency pf an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt. 31, 2891–2899(1992).
    [CrossRef] [PubMed]
  21. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10µm,” Appl. Opt. 35, 7117–7127 (1996).
    [CrossRef] [PubMed]

2009 (2)

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

2007 (1)

2004 (1)

R. Frehlich, “Velocity error for coherent Doppler lidar with pulse accumulation,” J. Atmos. Oceanic Tech. 21, 905–920(2004).
[CrossRef]

2002 (1)

2000 (1)

1996 (3)

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10µm,” Appl. Opt. 35, 7117–7127 (1996).
[CrossRef] [PubMed]

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

1994 (1)

P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

1992 (1)

1991 (2)

1990 (1)

1989 (1)

1987 (1)

1986 (1)

1984 (1)

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

1971 (1)

1970 (1)

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Ames, L. L.

Ando, T.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Asaka, K.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Augere, B.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Besson, C.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, C. Dimarzio, D. Fitzjarrald, S. Johnson, and W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Bricteux, L.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Brockman, P.

Brousmiche, S.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Byer, R. L.

Byvik, C. E.

Calloway, R. S.

Canat, G.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Cariou, J.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Darde, F.

P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

Dimarzio, C.

Dolfi-Bouteyre, A.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Durecu, A.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Eacock, J. R.

Fichtl, G.

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Fitzjarrald, D.

J. W. Bilbro, C. Dimarzio, D. Fitzjarrald, S. Johnson, and W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Flamant, P. H.

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

Fleury, D.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Forney, P.

Frehlich, R.

R. Frehlich, “Velocity error for coherent Doppler lidar with pulse accumulation,” J. Atmos. Oceanic Tech. 21, 905–920(2004).
[CrossRef]

Frehlich, R. G.

Goular, D.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Hale, C. P.

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

Harris, M.

Hawley, J. G.

Henderson, S. W.

Hirano, Y.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Horrigan, F. A.

Huffaker, A. V.

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Jelalian, A. V.

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Johnson, S.

Jones, W.

Kameyama, S.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Kane, T. J.

Karlsson, C. J.

Kavaya, M. J.

Klein, S. H.

Kozlovsky, W. J.

Krause, M.

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Letalick, D.

Lombard, L.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Lugan, S.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Macq, B.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Magee, J. R.

Olsson, F. A. A.

Otto, R. G.

Pearson, G. N.

Post, M. J.

Roberts, P. J.

Robinson, P. A.

Rye, B. J.

Salamitou, P.

P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

Sonnenschein, C. M.

Steakley, B. C.

Steinvall, K. O.

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

Stone, R.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Swanson, D.

Targ, R.

Thompson, J. A. L.

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Valla, M.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

Vaughhan, J. M.

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

Wadaka, S.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Werner, C.

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Zarifis, V.

Zhao, Y.

Appl. Opt. (9)

J. W. Bilbro, C. Dimarzio, D. Fitzjarrald, S. Johnson, and W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

B. J. Rye and R. G. Frehlich, “Optimal truncation and optical efficiency pf an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt. 31, 2891–2899(1992).
[CrossRef] [PubMed]

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10µm,” Appl. Opt. 35, 7117–7127 (1996).
[CrossRef] [PubMed]

C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[CrossRef]

C. M. Sonnenschein and F. A. Horrigan, “Signal-to noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604(1971).
[CrossRef] [PubMed]

G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002).
[CrossRef] [PubMed]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009).
[CrossRef]

J. Atmos. Oceanic Tech. (1)

R. Frehlich, “Velocity error for coherent Doppler lidar with pulse accumulation,” J. Atmos. Oceanic Tech. 21, 905–920(2004).
[CrossRef]

J. Mod. Opt. (1)

P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (3)

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of receiving geometry. The transmitted beam is not shown, but it is identical to the BPLO.

Fig. 2
Fig. 2

System efficiency at given values of focal range and correction factor versus truncation ratio. The system efficiency is obtained using NFI, and the correction factor is obtained using NGA.

Fig. 3
Fig. 3

Comparison of range dependence of normalized SNR obtained using the semianalytic equation [i.e., Eq. (6), solid curves] with NFI solution (dashed curves) for several truncation ratios. The range is normalized by π D 2 / ( 4 λ ) . The vertical axis is the normalized SNR, which is equal to η D ( L ) / L 2 normalized by the value in the near field when D b / D = 0.6 . The focal range is set at infinity.

Fig. 4
Fig. 4

System efficiency for focal range as obtained by Eq. (6) when L = L F versus the beam truncation ratio for some values of S 0 ( L F ) / D as determined by C n 2 .

Fig. 5
Fig. 5

Optimum truncation ratio considering the influence of C n 2 versus transverse coherent length normalized by aperture diam eter [i.e., S 0 ( L F ) / D ]. The second vertical axis shows C n 2 normalized by the range, wavelength, and aperture diameter, which corresponds to the value of the horizontal axis.

Fig. 6
Fig. 6

Signal-to-noise ratio versus focal range of the system (points, experimental result; solid curve, calculated result obtained using semianalytic equation; and dashed curve, calculated result obtained using conventional equation). The target range is fixed at 120 m with the experimental results.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η F = 128 F 2 ρ 4 0 | 0 1 exp [ ρ 2 x 2 ] J 0 ( 2 F x y ) x d x | 4 y d y ,
X ( D b , D , D b ) = | A E ( D b r ) E N * ( D b , r ) d r | 2 ,
E ( D b , r ) = ( 2 π ) 1 / 2 1 D b · exp ( r 2 D b 2 + j k r 2 2 L F ) , if r D / 2 = 0 , if r > D / 2 ,
E N ( D b , r ) = ( 2 π ) 1 / 2 1 D b · exp ( r 2 D b 2 + j k r 2 2 L F ) ,
SNR ( L ) = η D ( L ) λ E β K 2 L / 1000 π D 2 8 h B L 2 ,
η D ( L ) = η F { 1 + ( 1 L L F ) 2 [ π ( A C D ) 2 4 λ L ] 2 + ( A C D 2 S 0 ( L ) ) 2 } ,

Metrics