Abstract

Recently, optical fibers comprising a crystalline semiconductor core in a silica cladding have been successfully drawn by a conventional drawing process. These fibers are expected to exhibit a photoconductive response when illuminated by photons more energetic than the band gap of the core. In the photoconducting state, such a fiber can be expected to support driven RF currents so as to function as an antenna element, much as a plasma antenna. In this paper, we report the first device-related results on a crystalline semiconductor core optical fiber potentially useful in a photoconducting optical fiber antenna array; namely, optically induced changes to the electrical conductivity of a glass-clad germanium-core optical fiber. Since DC photoconduction measurements were masked by a photovoltaic effect, RF measurements at 5MHz were used to determine the magnitude of the induced photoconductive effect. The observed photoconductivity, though not large in the present experiment, was comparable to that measured for the bulk crystals from which the fibers were drawn. The absorbed pumping light generated photo-carriers, thereby transforming the core from a dielectric material to a conductor. This technology could thus enable a class of transient antenna elements useful in low observable and reconfigurable antenna array applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [CrossRef]
  2. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
    [CrossRef] [PubMed]
  3. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. Rao, and R. Rice, “Binary III–V Semiconductor Core Optical Fiber,” Opt. Express 18, 4972–4980(2010).
    [CrossRef] [PubMed]
  4. G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999).
    [CrossRef]
  5. I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
    [CrossRef]
  6. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995).
    [CrossRef] [PubMed]
  7. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
    [CrossRef]
  8. D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
    [CrossRef]
  9. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
    [CrossRef]
  10. C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84–86 (1977).
    [CrossRef]
  11. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977).
    [CrossRef]
  12. G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
    [CrossRef]
  13. G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
    [CrossRef]
  14. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
    [CrossRef]
  15. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
    [CrossRef]
  16. J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
    [CrossRef]
  17. A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987).
    [CrossRef]
  18. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
    [CrossRef]
  19. C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
    [CrossRef]
  20. Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
    [CrossRef]
  21. B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
    [CrossRef]
  22. J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
    [CrossRef]
  23. N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
    [CrossRef]
  24. X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
    [CrossRef]
  25. J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
    [CrossRef]
  26. N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
    [CrossRef]
  27. B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
    [CrossRef]
  28. D. W. Liu and P. H. Carr, “Optically-excited photoconducting antennas for generating ultra-wideband pulses,” in Ultra-Wideband, Short-Pulse ElectromagneticsC.E.Baum, L.Carin, and A.P.Stone, eds. (Plenum, 1997), part 2, ISBN: 978-0-3064-5593-3 Vol. 3, pp. 9–16.
  29. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
    [CrossRef]
  30. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
    [CrossRef]
  31. J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).
  32. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
    [CrossRef]
  33. D.Mittleman, ed., Sensing with Terahertz Radiation (Springer, 2003), ISBN: 978-3-5404-3110-7.
  34. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
    [CrossRef]
  35. M. J. Evans and W. R. Tribe, “Electrodes on a photoconductive substrate for generation and detection of terahertz radiation,” U.S. patent 7,609,208 (27 October 2009).
  36. A. Sengupta, “Novel characterization of materials using THz spectroscopic techniques,” Ph.D. dissertation in applied physics (New Jersey Institute of Technology and Rutgers, The State University of NJ–Newark, 2006), Chap. 2. http://archives.njit.edu/vol01/etd/2000s/2006/njit-etd2006-084/njit-etd2006-084.pdf.
  37. G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974).
    [CrossRef]

2010 (2)

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. Rao, and R. Rice, “Binary III–V Semiconductor Core Optical Fiber,” Opt. Express 18, 4972–4980(2010).
[CrossRef] [PubMed]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

2009 (2)

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

2008 (1)

2006 (1)

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

2004 (1)

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

2001 (1)

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

2000 (1)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
[CrossRef]

1999 (1)

G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999).
[CrossRef]

1997 (1)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

1995 (1)

1992 (3)

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

1991 (3)

J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[CrossRef]

1990 (1)

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

1989 (1)

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

1988 (2)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
[CrossRef]

1987 (1)

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987).
[CrossRef]

1986 (2)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
[CrossRef]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
[CrossRef]

1981 (2)

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
[CrossRef]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

1977 (2)

C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84–86 (1977).
[CrossRef]

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977).
[CrossRef]

1975 (1)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

1974 (1)

G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974).
[CrossRef]

Abouraddy, A.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Alexeff, I.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Anderson, T.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Antonetti, A.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

Auston, D. H.

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[CrossRef]

J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
[CrossRef]

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
[CrossRef]

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

Baker, C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Ballato, J.

Beere, H. E.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Blumenthal, D.

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
[CrossRef]

Borg, G.

G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999).
[CrossRef]

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Burka, L.

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Carr, P. H.

J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).

D. W. Liu and P. H. Carr, “Optically-excited photoconducting antennas for generating ultra-wideband pulses,” in Ultra-Wideband, Short-Pulse ElectromagneticsC.E.Baum, L.Carin, and A.P.Stone, eds. (Plenum, 1997), part 2, ISBN: 978-0-3064-5593-3 Vol. 3, pp. 9–16.

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
[CrossRef]

Chi, C-C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Chuang, S. L.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

Danto, S.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Davies, A. G.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[CrossRef]

DeFonzo, A. P.

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987).
[CrossRef]

Deng, D.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Derov, J. S.

J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).

Downey, P. M.

J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
[CrossRef]

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Dudley, J. M.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Duling, I. N.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Dykaar, D. R.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

Ellison, M.

Evans, M. J.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

M. J. Evans and W. R. Tribe, “Electrodes on a photoconductive substrate for generation and detection of terahertz radiation,” U.S. patent 7,609,208 (27 October 2009).

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
[CrossRef]

Fattinger, Ch.

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Fink, Y.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Foy, P.

Franceschetti, G.

G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974).
[CrossRef]

Froberg, N.

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

Froberg, N. M.

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Greene, B. I.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

Gregory, I. S.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Grischkowsky, D.

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Gutty, F.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Halbout, J-M.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Harris, J.

G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999).
[CrossRef]

Hawkins, T.

Hon, N. K.

Hu, B. B.

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Hulloli, J.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Hulloli, P.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Jalali, B.

Joannopoulos, J.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Karin, J. R.

J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
[CrossRef]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Ketchen, M. B.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[CrossRef]

Lee, C. H.

C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84–86 (1977).
[CrossRef]

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Linfield, E. H.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Liu, D. W.

D. W. Liu and P. H. Carr, “Optically-excited photoconducting antennas for generating ultra-wideband pulses,” in Ultra-Wideband, Short-Pulse ElectromagneticsC.E.Baum, L.Carin, and A.P.Stone, eds. (Plenum, 1997), part 2, ISBN: 978-0-3064-5593-3 Vol. 3, pp. 9–16.

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Lutz, C. R.

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987).
[CrossRef]

Mack, M.

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

Martin, R. J.

J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
[CrossRef]

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

McMillen, C.

Millot, G.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Morris, J. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977).
[CrossRef]

Morse, J. D.

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

Mourou, G.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
[CrossRef]

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
[CrossRef]

Orf, N.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Orszag, A.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

Papas, C. H.

G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974).
[CrossRef]

Parameswaran, S.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
[CrossRef]

Pitois, S.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Podila, R.

Powers, D. R.

Pradeep, E.

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

Rao, A.

Rao, A. M.

Reid, J. R.

J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).

Reppert, J.

Rice, R.

Rice, R. R.

Saeta, P. N.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

Sakai, K.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
[CrossRef]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Schmitt-Rink, S.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

Sengupta, A.

A. Sengupta, “Novel characterization of materials using THz spectroscopic techniques,” Ph.D. dissertation in applied physics (New Jersey Institute of Technology and Rutgers, The State University of NJ–Newark, 2006), Chap. 2. http://archives.njit.edu/vol01/etd/2000s/2006/njit-etd2006-084/njit-etd2006-084.pdf.

Sharma, S.

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Shen, Y. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977).
[CrossRef]

Shori, R.

Smith, P. R.

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
[CrossRef]

Snitzer, E.

Stafsudd, O.

Stancampiano, C. V.

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
[CrossRef]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

Stolen, R.

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Tani, M.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
[CrossRef]

Tribe, W. R.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

M. J. Evans and W. R. Tribe, “Electrodes on a photoconductive substrate for generation and detection of terahertz radiation,” U.S. patent 7,609,208 (27 October 2009).

Tritt, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Yazgan-Kokuoz, B.

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Zhang, X-C.

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[CrossRef]

J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (17)

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987).
[CrossRef]

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981).
[CrossRef]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999).
[CrossRef]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84–86 (1977).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
[CrossRef]

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991).
[CrossRef]

N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991).
[CrossRef]

X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992).
[CrossRef]

J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006).
[CrossRef]

J. Appl. Phys. (1)

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977).
[CrossRef]

Other (5)

J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).

D.Mittleman, ed., Sensing with Terahertz Radiation (Springer, 2003), ISBN: 978-3-5404-3110-7.

M. J. Evans and W. R. Tribe, “Electrodes on a photoconductive substrate for generation and detection of terahertz radiation,” U.S. patent 7,609,208 (27 October 2009).

A. Sengupta, “Novel characterization of materials using THz spectroscopic techniques,” Ph.D. dissertation in applied physics (New Jersey Institute of Technology and Rutgers, The State University of NJ–Newark, 2006), Chap. 2. http://archives.njit.edu/vol01/etd/2000s/2006/njit-etd2006-084/njit-etd2006-084.pdf.

D. W. Liu and P. H. Carr, “Optically-excited photoconducting antennas for generating ultra-wideband pulses,” in Ultra-Wideband, Short-Pulse ElectromagneticsC.E.Baum, L.Carin, and A.P.Stone, eds. (Plenum, 1997), part 2, ISBN: 978-0-3064-5593-3 Vol. 3, pp. 9–16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Test setup showing pin probe tips contacting Ge core at each end of the cane.

Fig. 2
Fig. 2

Temporal response of “apparent” resistivity of single-crystal Ge rod under illumination.

Fig. 3
Fig. 3

Simplified circuit diagram of photoconductive fiber RF test setup.

Fig. 4
Fig. 4

Temporal response of RF resistivity of single-crystal Ge rod under illumination.

Tables (2)

Tables Icon

Table 1 Dark Resistivity of the Germanium-Core Fiber Cane

Tables Icon

Table 2 Summary of RF Photoconductivity Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N d t = P α h ν A cl N τ ,
σ = N s e μ = P α τ e μ h ν A cl .
R r = 80 π 2 ( d λ ) 2 , R d = R s ( d 2 π a ) = π f μ 0 σ ( d 2 π a ) ,
η r = R r R r + R d = 1 1 + R s 160 π 3 ( λ a ) ( λ d ) .

Metrics