Abstract

We report a beam-shaping technique whereby the output power from a high-power laser-diode stack is efficiently coupled, reconfigured, and transmitted to a thin-disk laser by means of a compact optical fiber bundle. By using this technique, the power density is increased by a factor of 2 when compared to direct coupling with a octagonal fused silica rod while the numerical aperture is kept constant. Transmission efficiency of 80% was measured for the beam shaper without antireflection coating. The top-hat distribution is numerically calculated at the thin-disk laser crystal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
    [CrossRef]
  2. B. Jeffries and D. W. Coutts, “Asymmetric beam shaping of a diode-bar laser for multipass pumping of a thin-crystal laser,” J. Opt. Soc. Am. B 22, 2121–2128 (2005).
    [CrossRef]
  3. W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett. 21, 375–377(1996).
    [CrossRef] [PubMed]
  4. J. R. Leger and W. C. Goltsos, “Diode-pumped IR solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
    [CrossRef]
  5. T. Graf and J. E. Balmer, “High-power Nd:YLF laser end pumped by a diode-laser bar,” Opt. Lett. 18, 1317–1319 (1993).
    [CrossRef] [PubMed]
  6. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, “Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot,” Opt. Lett. 20, 898–900 (1995).
    [CrossRef] [PubMed]
  7. D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
    [CrossRef]
  8. W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic, 1989).

2005

2000

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

1998

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

1996

1995

1993

1992

J. R. Leger and W. C. Goltsos, “Diode-pumped IR solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Balmer, J. E.

Chiba, K.

Clarkson, W. A.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Coutts, D. W.

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Goltsos, W. C.

J. R. Leger and W. C. Goltsos, “Diode-pumped IR solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Graf, T.

Hanna, D. C.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Jeffries, B.

Kobayashi, T.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Leger, J. R.

J. R. Leger and W. C. Goltsos, “Diode-pumped IR solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Liang, D.

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Monteiro, L.

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Monteiro, M.

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Pereira, M.

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Saito, Y.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Teixeira, M.

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Welford, W. T.

W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic, 1989).

Winston, R.

W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic, 1989).

Yamaguchi, S.

IEEE J. Quantum Electron.

J. R. Leger and W. C. Goltsos, “Diode-pumped IR solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

IEEE J. Select. Top. Quantum Electron.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1kWCW thin disc laser,” IEEE J. Select. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Sol. Energy Mat. Sol. Cells

D. Liang, L. Monteiro, M. Teixeira, M. Monteiro, and M. Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mat. Sol. Cells 54, 323–331 (1998).
[CrossRef]

Other

W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the proposed beam-shaping setup for the thin-disk laser. In order to make the interfaces between the fibers visible, they have been marked with dashed lines in the inset photographs.

Fig. 2
Fig. 2

Radiation distribution incident at (a) input face and (b) output face of the single octagonal homogenizer.

Fig. 3
Fig. 3

Incident radiation distribution at (a) input end of the optical fiber array, (b) output end of the optical fiber array, and (c) output end of the octagonal homogenizer.

Fig. 4
Fig. 4

Distribution of the absorbed pump power for (a) single octagonal homogenizer setup, (b) fiber/octagonal rod setup with = 1.5 mm , (c) fiber/octagonal rod setup with = 1.6 mm , and (d) fiber/octagonal rod setup with = 1.7 mm .

Fig. 5
Fig. 5

Experimental setup for the 1.5 mm diameter optical fibers.

Fig. 6
Fig. 6

Transmitted power at the output end of the fiber bundle and the measured temperature of the 1.5 mm diameter fiber-array input end versus the pump power.

Tables (1)

Tables Icon

Table 1 Calculated Results of Collected Power, Absorbed Power, and Pump Spot Diameter

Metrics