Abstract

We show that any optical pulse train recovers its original waveform after passing through a group velocity dispersion (GVD) device when the total GVD value of the device is equal to an integral multiple of 1/(2πfrep2), where frep is the repetition rate of the optical pulse train. In addition, we detail our proposed GVD measurement method, or optical phase-modulation (PM) method, which utilizes a sinusoidally PM continuous wave (CW) light as a probe light. The total GVD B2 of a device under test (DUT) is derived by using a very simple equation, |B2|=1/(2πfnull2), where fnull is the smallest modulation frequency at which the sinusoidally PM light becomes CW light again after passing through the DUT.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
    [CrossRef]
  2. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
    [CrossRef]
  3. B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
    [CrossRef]
  4. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
    [CrossRef]
  5. A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
    [CrossRef]
  6. Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
    [CrossRef]
  7. T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
    [PubMed]
  8. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
    [CrossRef]
  9. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
    [CrossRef]
  10. T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
    [CrossRef]
  11. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
    [CrossRef]
  12. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
    [CrossRef]
  13. K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
    [CrossRef]
  14. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
    [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  16. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [CrossRef]
  17. K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” in Proceedings of the 33rd European Conference on Optical Communication (VDE2007), PD 2.1.
  18. K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
    [CrossRef]

2009 (1)

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

2007 (1)

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

2006 (1)

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

2005 (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
[CrossRef]

2002 (1)

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

1998 (2)

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

1997 (1)

1996 (1)

Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
[CrossRef]

1994 (1)

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

1993 (2)

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

1987 (1)

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

1986 (1)

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

Abe, M.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

Akiyama, Y.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Albert, J.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Alferness, R. C.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Bilodeau, F.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Birks, T. A.

Bodtker, E.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Buhl, L. L.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Fujise, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Hagimoto, K.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Hill, K. O.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Ieda, K.

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

Ishikawa, G.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Isono, H.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Iwamoto, Y.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Johnson, D. C.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Kataoka, T.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Kawahata, Y.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Kawanishi, S.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Kitagawa, T.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Knight, J. C.

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Komukai, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
[CrossRef]

Kurashima, T.

T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
[PubMed]

Kurokawa, K.

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
[PubMed]

Kuwazuru, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

Malo, B.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Masuda, H.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

Mogilevtsev, D.

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Morioka, T.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

Nakajima, K.

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

Nakamura, K.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Nunokawa, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

Ohara, T.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

Ooi, H.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

Russell, P. St. J.

Saruwatari, M.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

Sato, Y.

Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
[CrossRef]

Shake, I.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Suzuki, K.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

Tajima, K.

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
[PubMed]

K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” in Proceedings of the 33rd European Conference on Optical Communication (VDE2007), PD 2.1.

Takada, A.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

Takahara, T.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Takahashi, H.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

Takara, H.

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

Takiguchi, K.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Terahara, T.

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

Thériault, S.

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

Tkach, R. W.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

Tomizawa, M.

Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
[CrossRef]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

Yamabayashi, Y.

Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
[CrossRef]

Yamamoto, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
[CrossRef]

T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
[PubMed]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Electron. Lett. (4)

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett. 22, 409–411(1986).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[CrossRef]

K. O. Hill, S. Thériault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100km, 10Gbit/s optical fibre link,” Electron. Lett. 30, 1755–1756 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (5)

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” IEEE J. Lightwave Technol. 20, 2196–2203 (2002).
[CrossRef]

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” IEEE J. Lightwave Technol. 24, 2311–2317 (2006).
[CrossRef]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multi-carrier light source with flattened spectrum using phase modulators and dispersion medium,” IEEE J. Lightwave Technol. 27, 4297–4305 (2009).
[CrossRef]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter,” IEEE J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly accurate long-span chromatic dispersion measurement system by a new phase-shift technique,” IEEE J. Lightwave Technol. 5, 751–758 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1514 (1982).
[CrossRef]

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 1746–1748 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

Y. Yamabayashi, M. Tomizawa, and Y. Sato, “Single-wavelength dispersion measurement for multiple-fiber section connected with narrow-band optical amplifiers,” IEEE Trans. Instrum. Meas. 45, 218–224 (1996).
[CrossRef]

IEICE Electron. Express (1)

K. Ieda, K. Kurokawa, K. Tajima, and K. Nakajima, “Visible to infrared high-speed WDM transmission over PCF,” IEICE Electron. Express 4, 375–379 (2007).
[CrossRef]

Opt. Lett. (2)

Other (2)

K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” in Proceedings of the 33rd European Conference on Optical Communication (VDE2007), PD 2.1.

T. Yamamoto, K. Kurokawa, K. Tajima, and T. Kurashima, “Simple and precise chromatic dispersion measurement using sinusoidally phase-modulated CW light,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference (IEEE, 2009), paper OThD1.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic optical spectrum of an optical pulse train with a repetition rate of f rep .

Fig. 2
Fig. 2

Optical pulse waveform after a chromatic dispersion medium calculated for (a) Gaussian, (b) sech, and (c) rectangular pulses.

Fig. 3
Fig. 3

Schematic configuration of the proposed chromatic dispersion measurement method.

Fig. 4
Fig. 4

Optical waveform of sinusoidally PM light after a chromatic dispersion medium calculated for (a) Δ θ = π / 8 , (b) π / 4 , and (c) π / 2 .

Fig. 5
Fig. 5

Calculated IM component at f pm after PM to IM conversion as a function of modulation frequency f pm .

Fig. 6
Fig. 6

Calculated relationship between chromatic dispersion and null frequency f null .

Fig. 7
Fig. 7

Schematic configuration for measuring small GVD.

Fig. 8
Fig. 8

RF power at f pm as a function of f pm measured for 100 km SMF.

Fig. 9
Fig. 9

Measured waveform after 100 km SMF.

Fig. 10
Fig. 10

Measured chromatic dispersion of 24 km PCF.

Fig. 11
Fig. 11

Measured f null of 5 km SMF and 5 km + 50 m SMF.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = | n = ( E n · exp { i [ ( ω 0 + 2 π n f rep ) t ϕ n 0 ] } ) | 2 ,
P ( t ) = | n = { E n · exp [ i ( 2 π n f rep t ϕ n 0 ) ] } | 2 .
P ( B 2 , t ) = | n = { E n · exp [ i ( Δ ϕ n , GVD 2 π n f rep t + ϕ n 0 ) ] } | 2 ,
Δ ϕ n , GVD = B 2 ( 2 π n f rep ) 2 2 = 2 π 2 n 2 f rep 2 B 2 .
ϕ n ( B 2 , t ) = 2 π 2 n 2 f rep 2 B 2 2 π n f rep t + ϕ n 0 .
ϕ n c ( 0 , t a ) = 2 π n c f rep t a + ϕ n 0 .
ϕ n c ( B 2 , t a + Δ t ) = 2 π 2 n c 2 f rep 2 B 2 2 π n c f rep ( t a + Δ t ) + ϕ n 0 .
Δ ϕ n c = ϕ n c ( B 2 , t a + Δ t ) ϕ n c ( 0 , t a ) = 2 π 2 n c 2 f rep 2 B 2 2 π n c f rep Δ t .
Δ ϕ n = 2 π 2 n 2 f rep 2 B 2 2 π n f rep Δ t = 2 π k n ,
n · ( n β α ) · α = k n ,
B 2 = p 2 π f rep 2 ,
Δ t = T 0 2 [ 2 q mod ( p , 2 ) ] ,
E n , Gauss = f rep Δ τ P peak 0.441 · exp [ ( π n f rep Δ τ ) 2 2 ln 2 ] ,
E n , sech = f rep Δ τ P peak 0.315 · sech [ π 2 n f rep Δ τ 2 ln ( 1 + 2 ) ] ,
E n , rectangular = f rep Δ τ P peak · sin ( π n f rep Δ τ ) π n f rep Δ τ ,
B 2 rcv = 1 2 π f rep 2 .
P ( B 2 , t ) = { P ( 0 , t ) ( p : even number ) P ( 0 , t + T 0 / 2 ) ( p : odd number ) .
P PM ( t ) = | n = { E n , PM · exp [ i ( 2 π n f PM t ϕ 0 ) ] } | 2 ,
E n , PM = P CW · J n ( Δ θ ) ,
Δ θ = π V pp 2 V π ,
P DUT ( t ) = P CW · | n = { J n ( Δ θ ) · exp [ i ( Δ ϕ n , GVD 2 π n f PM t + ϕ 0 ) ] } | 2 .
f PM = m 2 π | B 2 | ,
f null = 1 2 π | B 2 | .
| B 2 | = 1 2 π f null 2 .
| D | = c λ 2 f null 2 .
B 2 DUT = Sign ( B 2 d ) f nulld 2 - f nullt 2 2 π f nulld 2 · f nullt 2 .

Metrics