Abstract

This paper reports a fuzzy logic based feedback control system for beam pointing stabilization of a high-power nanosecond Nd:YAG laser operating at 30Hz. This is achieved by generating the correcting signal for each consequent pulse from the error in the pointing position of the previous laser pulse. We have successfully achieved a reduction of beam position fluctuation from ±60 to ±5.0μrad without the focusing optics and ±0.9μrad with focusing optics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
    [CrossRef]
  2. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
    [CrossRef]
  3. I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
    [CrossRef]
  4. A. Stalmashonak, N.I Zhavoronkov, I. Volker H., Sergei Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
    [CrossRef] [PubMed]
  5. L. Kral, “Automatic beam alignment system for a pulsed infrared laser,” Rev. Sci. Instrum. 80, 013102 (2009).
    [CrossRef] [PubMed]
  6. E. Cox, The Fuzzy Systems Handbook (Academic, 1994).

2009 (1)

L. Kral, “Automatic beam alignment system for a pulsed infrared laser,” Rev. Sci. Instrum. 80, 013102 (2009).
[CrossRef] [PubMed]

2008 (1)

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

2006 (1)

2001 (2)

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

Bohman, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Breitling, F.

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

Cox, E.

E. Cox, The Fuzzy Systems Handbook (Academic, 1994).

Downer, M. C.

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

H., I. Volker

Hayashi, H.

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

Kaku, M.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kanai, T.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kral, L.

L. Kral, “Automatic beam alignment system for a pulsed infrared laser,” Rev. Sci. Instrum. 80, 013102 (2009).
[CrossRef] [PubMed]

Midorikawa, K.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Narihara, K.

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

Schmid, K.

Stalmashonak, A.

Suda, A.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Tajima, T.

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

Vetrov, Sergei

Weigel, R. S.

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

Yamada, I.

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

Yamaguchi, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Yamauchi, K.

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

Zhavoronkov, N.I

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Rev. Sci. Instrum. (3)

I. Yamada, K. Narihara, K. Yamauchi, and H. Hayashi, “Active control of laser beam direction for LHD YAG Thomson scattering,” Rev. Sci. Instrum. 72, 1126–1128 (2001).
[CrossRef]

L. Kral, “Automatic beam alignment system for a pulsed infrared laser,” Rev. Sci. Instrum. 80, 013102 (2009).
[CrossRef] [PubMed]

F. Breitling, R. S. Weigel, M. C. Downer, and T. Tajima, “Laser pointing stabilization and control in the submicroradian regime with neural networks,” Rev. Sci. Instrum. 72, 1339–1342 (2001).
[CrossRef]

Other (1)

E. Cox, The Fuzzy Systems Handbook (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic arrangement of the laser beam feedback control system.

Fig. 2
Fig. 2

Snap shot of the developed program using the fuzzy logic controller in LabVIEW.

Fig. 3
Fig. 3

Effect of feedback control on the laser beam fluctuation in (a) pixel number and (b) μrad as function of number of laser pulses. The applied condition is represented by “OFF” (feedback control off) and “ON” (feedback control on).

Fig. 4
Fig. 4

Spread of laser beam fluctuation in the horizontal (X axis) and vertical (Y axis) directions with and without feedback control condition is represented in histogram.

Fig. 5
Fig. 5

Scatter plot for the laser beam fluctuation when focusing optics is used in the beam path. The black dark and light dark square portions show the corrected beam position within limit and over shooting fluctuation of the laser beam under feedback condition.

Metrics