Abstract

Gloss standards are commonly defined for gloss measurement from flat surfaces, and, accordingly, glossmeters are typically developed for flat objects. However, gloss inspection of convex, concave, and small products is also important. In this paper, we define statistical gloss parameters for curved objects and measure gloss data on convex and concave surfaces using two different diffractive-optical-element-based glossmeters. Examples of measurements with the two diffractive-optical-element-based glossmeters are given for convex and concave aluminum pipe samples with and without paint. The defined gloss parameters for curved objects are useful in the characterization of the surface quality of metal pipes and other objects.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennet and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1997).
  2. H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
    [CrossRef] [PubMed]
  3. P. Cielo, Optical Techniques for Industrial Optical Inspection (Academic, 1988).
  4. K.-E. Peiponen, R. Myllylä, and A. Priezzhev, Optical Measurement Techniques: Innovations for Industry and the Life Sciences (Springer, 2009).
  5. R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).
  6. M. Lindstrand, “Instrumental gloss characterization—in the light of visual evaluation: a review,” J. Imaging Sci. Technol. 49, 61–70 (2005).
  7. R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).
  8. M. S. Landy, “A gloss on surface properties,” Nature 447, 158–159 (2007).
    [CrossRef] [PubMed]
  9. K.-E. Peiponen and M. Juuti, “Statistical parameters for gloss evaluation,” Appl. Phys. Lett. 88, 071104 (2006).
    [CrossRef]
  10. A. Oksman, M. Juuti, and K.-E. Peiponen, “Sensor for the detection of local contrast gloss of products,” Opt. Lett. 33, 654–656 (2008).
    [CrossRef] [PubMed]
  11. K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
    [CrossRef]
  12. M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
    [CrossRef]
  13. A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
    [CrossRef]
  14. A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
    [CrossRef]
  15. F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
    [CrossRef]
  16. K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
    [CrossRef]
  17. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, 2005).
  18. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).
  19. D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
    [CrossRef]

2010

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
[CrossRef]

2009

K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
[CrossRef]

2008

A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
[CrossRef]

A. Oksman, M. Juuti, and K.-E. Peiponen, “Sensor for the detection of local contrast gloss of products,” Opt. Lett. 33, 654–656 (2008).
[CrossRef] [PubMed]

2007

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

M. S. Landy, “A gloss on surface properties,” Nature 447, 158–159 (2007).
[CrossRef] [PubMed]

2006

K.-E. Peiponen and M. Juuti, “Statistical parameters for gloss evaluation,” Appl. Phys. Lett. 88, 071104 (2006).
[CrossRef]

2005

M. Lindstrand, “Instrumental gloss characterization—in the light of visual evaluation: a review,” J. Imaging Sci. Technol. 49, 61–70 (2005).

2002

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

2000

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

1996

A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
[CrossRef]

Aguilera, M.

F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
[CrossRef]

Arfken, G. B.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, 2005).

Assender, H.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Bennet, J. M.

J. M. Bennet and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1997).

Bliznyuk, V.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Bousfield, D. W.

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

Cielo, P.

P. Cielo, Optical Techniques for Industrial Optical Inspection (Academic, 1988).

Dejmek, P.

F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
[CrossRef]

Desjumaux, D. M.

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

Glatter, T. P.

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

Harold, R. W.

R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).

Hunter, R. S.

R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).

Juuti, M.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

A. Oksman, M. Juuti, and K.-E. Peiponen, “Sensor for the detection of local contrast gloss of products,” Opt. Lett. 33, 654–656 (2008).
[CrossRef] [PubMed]

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

K.-E. Peiponen and M. Juuti, “Statistical parameters for gloss evaluation,” Appl. Phys. Lett. 88, 071104 (2006).
[CrossRef]

Kuivalainen, K.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
[CrossRef]

Landy, M. S.

M. S. Landy, “A gloss on surface properties,” Nature 447, 158–159 (2007).
[CrossRef] [PubMed]

Lindstrand, M.

M. Lindstrand, “Instrumental gloss characterization—in the light of visual evaluation: a review,” J. Imaging Sci. Technol. 49, 61–70 (2005).

Lu, R.

A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
[CrossRef]

Mattson, L.

J. M. Bennet and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1997).

Mendoza, F.

F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
[CrossRef]

Mey-Tal, E.

A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
[CrossRef]

Mizrach, A.

A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
[CrossRef]

Myller, K.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
[CrossRef]

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Myllylä, R.

K.-E. Peiponen, R. Myllylä, and A. Priezzhev, Optical Measurement Techniques: Innovations for Industry and the Life Sciences (Springer, 2009).

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).

Nussinovitch, A.

A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
[CrossRef]

Obraztsov, A. N.

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

Oksman, A.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

A. Oksman, M. Juuti, and K.-E. Peiponen, “Sensor for the detection of local contrast gloss of products,” Opt. Lett. 33, 654–656 (2008).
[CrossRef] [PubMed]

Peiponen, K.-E.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
[CrossRef]

A. Oksman, M. Juuti, and K.-E. Peiponen, “Sensor for the detection of local contrast gloss of products,” Opt. Lett. 33, 654–656 (2008).
[CrossRef] [PubMed]

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

K.-E. Peiponen and M. Juuti, “Statistical parameters for gloss evaluation,” Appl. Phys. Lett. 88, 071104 (2006).
[CrossRef]

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

K.-E. Peiponen, R. Myllylä, and A. Priezzhev, Optical Measurement Techniques: Innovations for Industry and the Life Sciences (Springer, 2009).

Porfyrakis, K.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Priezzhev, A.

K.-E. Peiponen, R. Myllylä, and A. Priezzhev, Optical Measurement Techniques: Innovations for Industry and the Life Sciences (Springer, 2009).

Rubino, M.

A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
[CrossRef]

Silvennoinen, R.

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Van Gilder, R. L.

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

Ward, G.

A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
[CrossRef]

Weber, H. J.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, 2005).

Appl. Phys. Lett.

K.-E. Peiponen and M. Juuti, “Statistical parameters for gloss evaluation,” Appl. Phys. Lett. 88, 071104 (2006).
[CrossRef]

Food Bioprocess Technol.

A. Mizrach, R. Lu, and M. Rubino, “Gloss evaluation of curved-surface fruits and vegetables,” Food Bioprocess Technol. 2, 300–307 (2008).
[CrossRef]

Food Res. Int.

F. Mendoza, P. Dejmek, and M. Aguilera, “Gloss measurement of raw agricultural products using image analysis,” Food Res. Int. 43, 18–25 (2010).
[CrossRef]

J. Imaging Sci. Technol.

M. Lindstrand, “Instrumental gloss characterization—in the light of visual evaluation: a review,” J. Imaging Sci. Technol. 49, 61–70 (2005).

Lebensm. Wiss. Technol.

A. Nussinovitch, G. Ward, and E. Mey-Tal, “Gloss of fruits and vegetables,” Lebensm. Wiss. Technol. 29, 184–186 (1996).
[CrossRef]

Meas. Sci. Technol.

K. Kuivalainen, K.-E. Peiponen, and K. Myller, “Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface,” Meas. Sci. Technol. 20, 077002 (2009).
[CrossRef]

Nature

M. S. Landy, “A gloss on surface properties,” Nature 447, 158–159 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

M. Juuti, K.-E. Peiponen, A. N. Obraztsov, R. Silvennoinen, and K. Myller, “A glossmeter for inspection of surface quality of low gloss nano-carbon surface,” Opt. Mater. 29, 1719–1722 (2007).
[CrossRef]

Opt. Rev.

K. Kuivalainen, A. Oksman, M. Juuti, K. Myller, and K.-E. Peiponen, “Advanced glossmeter for industrial applications,” Opt. Rev. 17, 248–251 (2010).
[CrossRef]

Prog. Org. Coat.

D. M. Desjumaux, D. W. Bousfield, T. P. Glatter, and R. L. Van Gilder, “The influence of latex type and concentration on ink gloss dynamics,” Prog. Org. Coat. 38, 89–95 (2000).
[CrossRef]

Science

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Other

P. Cielo, Optical Techniques for Industrial Optical Inspection (Academic, 1988).

K.-E. Peiponen, R. Myllylä, and A. Priezzhev, Optical Measurement Techniques: Innovations for Industry and the Life Sciences (Springer, 2009).

R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).

J. M. Bennet and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1997).

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, 2005).

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the DOG: L, lens; BS, beam splitter; and PC, personal computer.

Fig. 2
Fig. 2

Schematic diagram of the HWDOG: D, photodiode and α, incident angle of the probe beam. The aperture of the DOE is shown in the inset.

Fig. 3
Fig. 3

Measurement directions for (a) convex and (b) concave samples: LA, longitudinal axis and CP, circular path.

Fig. 4
Fig. 4

Gloss maps measured with DOG from convex and concave sample series: (a) concave aluminum, (b) convex aluminum, (c) concave white painted, (d) convex white painted, (e) concave black painted, and (f) convex black painted.

Fig. 5
Fig. 5

Gloss profiles measured from convex surfaces of the aluminum pipes along (a) the longitudinal axis, and (b) the circular path as well as from concave surfaces of the aluminum half pipes along (c) the longitudinal axis, and (d) the circular path.

Fig. 6
Fig. 6

Average gloss G ave correlation between the data obtained with the DOG and the HWDOG.

Tables (1)

Tables Icon

Table 1 Statistical Gloss Parameters G ave and G var for Convex and Concave Aluminum Samples Obtained with DOG and with HWDOG along Longitudinal Axis and Circular Path

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ave = 1 L C G ( s ) d s = 1 L a b G ( r ( t ) ) | d r ( t ) d t | d t ,
G var = 1 L C | G ( s ) G ave | d s = 1 L a b | G ( r ( t ) ) G ave | | d r ( t ) d t | d t .
G = I sample I reference × 100 ,

Metrics