Abstract

Electronic speckle pattern interferometry and digital holographic interferometry are investigated at long infrared wavelengths. Using such wavelengths allows one to extend the measurement range and decrease the sensitivity of the techniques to external perturbations. We discuss the behavior of reflection by the object surfaces due to the long wavelength. We have developed different experimental configurations associating a CO2 laser emitting at 10.6μm and microbolometer arrays. Phase-shifting in-plane and out-of-plane electronic speckle pattern interferometry and lensless digital holographic interferometry are demonstrated on rotation measurements of a solid object.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Holographic Interferometry—Principles and Methods (Akademie Verlag, 1996).
  2. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  3. C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.
  4. C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
    [CrossRef]
  5. H. J. Caulfield, Q. B. He, and M. P. Schamschula, “Reduced coherence, stability and temporal overlap requirements for holography,” Appl. Opt. 30, 4170–4171 (1991).
    [CrossRef] [PubMed]
  6. P. Hariharan, Optical Holography. Principles, Techniques and Applications (Cambridge University, 1996), and references cited therein.
  7. C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
    [CrossRef]
  8. F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [CrossRef]
  9. M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
    [PubMed]
  10. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).
  11. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
    [CrossRef]
  12. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970).
    [CrossRef] [PubMed]
  13. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
    [CrossRef]
  14. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6μm and reconstructed at 0.6328μm,” Appl. Opt. 15, 2018–2019 (1976).
    [CrossRef] [PubMed]
  15. M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6μm,” Appl. Opt. 16, 1876–1879 (1977).
    [CrossRef] [PubMed]
  16. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977).
    [CrossRef]
  17. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
    [CrossRef] [PubMed]
  18. J. Lewandowsky, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
    [CrossRef]
  19. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).
  20. R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
    [CrossRef]
  21. S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. Fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263(2003).
    [CrossRef] [PubMed]
  22. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984).
    [CrossRef]
  23. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
    [CrossRef]
  24. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
    [CrossRef]
  25. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
    [CrossRef]
  26. J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Optoelectron. Rev. 12, 105–109(2004).
  27. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008).
    [CrossRef] [PubMed]
  28. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
    [CrossRef]
  29. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
    [CrossRef]
  30. J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw–Hill, 1990).
  31. K. J. Gåsvik, Optical Metrology (Wiley, 1987).
  32. T. Maack, R. Kowarschik, and G. Notni, “Optimum lens aperture in phase-shifting speckle interferometric setups for maximum accuracy of phase measurement,” Appl. Opt. 36, 6217–6224 (1997).
    [CrossRef]
  33. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
    [CrossRef]
  34. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  35. T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
    [CrossRef]
  36. Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
    [CrossRef]

2008 (4)

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008).
[CrossRef] [PubMed]

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
[CrossRef]

2007 (1)

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).

2006 (1)

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

2005 (1)

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

2004 (1)

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Optoelectron. Rev. 12, 105–109(2004).

2003 (4)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. Fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263(2003).
[CrossRef] [PubMed]

2000 (2)

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

1997 (2)

1994 (2)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).

1991 (1)

1984 (2)

J. Lewandowsky, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
[CrossRef]

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984).
[CrossRef]

1978 (1)

1977 (2)

M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

1976 (1)

1971 (1)

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

1970 (1)

1969 (1)

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Arecchi, F. T.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Beaulieu, R.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef] [PubMed]

M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Bélanger, D.

Bergander, H.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Black, T. D.

Blanchard, M.

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Buah-Bassuah, P. K.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Calixto, S.

Caulfield, H. J.

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Chi, W.

Chin, S. L.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).

Chivian, J. S.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Claytor, R. N.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Coe, G.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Collette, J.-P.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Cormier, M.

Cornier, M.

Crastes, A.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

De Nicola, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Deeds, W. E.

Doyle, D.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Eden, D. D.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Ferraro, P.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Fièque, B.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology (Wiley, 1987).

George, N.

Georges, M.

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Grilli, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography. Principles, Techniques and Applications (Cambridge University, 1996), and references cited therein.

He, Q. B.

Houbrechts, Y.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

John, R.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Jones, R.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Jüptner, W.

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

Khare, K.

Kobayashi, S.

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Kowarschik, R.

Kreis, T.

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

T. Kreis, Holographic Interferometry—Principles and Methods (Akademie Verlag, 1996).

Kruse, P. W.

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
[CrossRef]

Kurihara, K.

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Kwon, O.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984).
[CrossRef]

Legras, O.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Lemaire, P.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Lemaire, Ph.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Lessard, R. A.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Leval, J.

Lewandowsky, J.

Løkberg, O. J.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984).
[CrossRef]

Maack, T.

Mazy, E.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Mazzoli, A.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Meucci, R.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Miccio, L.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Minassian, C.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Mongeau, B.

Notni, G.

Orteu, J.-J.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
[PubMed]

Picart, P.

Rioux, M.

Robert, P.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Roberts, R. R.

Rochus, P.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Schamschula, M. P.

Schnars, U.

Schreier, H. W.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
[PubMed]

Seifart, K.

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Simpson, W. A.

Skotheim, Ø.

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Stockman, Y.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Stover, J. C.

J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw–Hill, 1990).

Sutton, M. A.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
[PubMed]

Thizy, C.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

Tissot, J. L.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Optoelectron. Rev. 12, 105–109(2004).

Tychon, I.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Ulbrich, G.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Vandenrijt, J.-F.

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).

Vilain, M.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Wykes, C.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Yamaguchi, I.

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

Yon, J. J.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Appl. Opt. (10)

H. J. Caulfield, Q. B. He, and M. P. Schamschula, “Reduced coherence, stability and temporal overlap requirements for holography,” Appl. Opt. 30, 4170–4171 (1991).
[CrossRef] [PubMed]

W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef] [PubMed]

J. Lewandowsky, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
[CrossRef]

R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6μm and reconstructed at 0.6328μm,” Appl. Opt. 15, 2018–2019 (1976).
[CrossRef] [PubMed]

M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef] [PubMed]

S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. Fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263(2003).
[CrossRef] [PubMed]

N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008).
[CrossRef] [PubMed]

T. Maack, R. Kowarschik, and G. Notni, “Optimum lens aperture in phase-shifting speckle interferometric setups for maximum accuracy of phase measurement,” Appl. Opt. 36, 6217–6224 (1997).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Opt. Eng. (2)

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Opt. Laser Technol. (1)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984).
[CrossRef]

Optoelectron. Rev. (1)

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Optoelectron. Rev. 12, 105–109(2004).

Proc. SPIE (8)

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

Other (8)

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
[PubMed]

P. Hariharan, Optical Holography. Principles, Techniques and Applications (Cambridge University, 1996), and references cited therein.

T. Kreis, Holographic Interferometry—Principles and Methods (Akademie Verlag, 1996).

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.

J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw–Hill, 1990).

K. J. Gåsvik, Optical Metrology (Wiley, 1987).

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical setup used for the observation of speckle pattern in infrared. Here, the illumination is such that the specular peak does not enter the imaging system.

Fig. 2
Fig. 2

Line profile of the reflected light intensity distribution of an aluminum plate coated with scattering powder illuminated by a divergent infrared laser beam for three different laser intensities. Graph (b) is a zoom of the lower part of graph (a).

Fig. 3
Fig. 3

Experimental setup for in-plane ESPI.

Fig. 4
Fig. 4

(a) Difference of two phase maps modulo 2 π . (b) After unwrapping, rotation around the z axis.

Fig. 5
Fig. 5

Rotation angles measured by in-plane LWIR ESPI with respect to theodolite angle measurements.

Fig. 6
Fig. 6

Scheme of the experimental setup for out-of-plane LWIR ESPI.

Fig. 7
Fig. 7

(a) Difference of two phase maps modulo 2 π . (b) After unwrapping, rotation around the x axis.

Fig. 8
Fig. 8

Rotation angle measurements using out-of-plane ESPI in LWIR compared to theodolite measurements.

Fig. 9
Fig. 9

Scheme of the experimental setup for LWIR lensless digital holography.

Fig. 10
Fig. 10

(a) Object: metallic plate covered with scattering powder. A small mirror is attached for countermeasurements. (b) Reconstructed digital hologram in LWIR.

Fig. 11
Fig. 11

Phase difference computation algorithm.

Fig. 12
Fig. 12

(a) Difference of two phases reconstructed (modulo 2 π ). (b) After unwrapping, a rotation around the x axis.

Fig. 13
Fig. 13

Rotation angle measurements using out-of-plane ESPI in LWIR, compared to theodolite measurements.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ s = 1.22 λ l s D 9.4 μm ,
Φ = 2 k π = 4 π λ d y sin θ ,
d y = L x sin α ,
α sin α k λ L x sin θ .
σ s = 21.5 μm .
Φ = 2 k π = 4 π λ d z ,
α sin α = k λ 2 L y ,
β max arcsin ( λ 4 Δ ) ,

Metrics