Abstract

We report a high-performance 25km Brillouin-loss-based distributed fiber sensor through optimizing system parameters. First, the Brillouin spectrum distortion and measurement error induced by the excess amplification on probe pulse are investigated, and the results indicate that a low continuous-wave pump power is essential to decrease the measurement error. Then an optimal pulse pair is determined through the differential Brillouin gain evolution along the entire sensing fiber in a differential pulse-width pair Brillouin optical time domain analysis. Using dispersion-shifted fiber to allow a high-power probe pulse, we realize a 25km sensing range with a spatial resolution of 30cm and a strain accuracy of ±20με, which we believe is the best performance in such a length, to the best of our knowledge.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, “22km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
    [CrossRef] [PubMed]
  2. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef] [PubMed]
  3. X. Bao, D. J. Webb, and D. A. Jackson, “32km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
    [CrossRef] [PubMed]
  4. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
    [CrossRef] [PubMed]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef] [PubMed]
  6. S. M. Maughan, H. H. Kee, and T. P. Newson, “57km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
    [CrossRef]
  7. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  8. E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
    [CrossRef]
  9. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
    [CrossRef]
  10. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [CrossRef] [PubMed]
  11. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48, 4297–4301 (2009).
    [CrossRef] [PubMed]
  12. M. N. Alahbabi, Y. T. Cho, T. P. Newson, P. C. Wait, and A. H. Hartog, “Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering,” J. Opt. Soc. Am. B 21, 1156–1160 (2004).
    [CrossRef]
  13. D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

2009 (1)

2008 (1)

2005 (2)

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

2004 (1)

2001 (1)

1999 (1)

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

1993 (3)

Abrardi, L.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Alahbabi, M. N.

Alasia, D.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Bao, X.

Bartelt, H.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Bernini, R.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

Chen, L.

Cho, Y. T.

Dong, Y.

Farhadiroushan, M.

Geinitz, E.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Handerek, V. A.

Hartog, A. H.

Herraez, M. G.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

Jackson, D. A.

Jetschke, S.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Kee, H. H.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

Li, W.

Li, Y.

Lopez, S. M.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Maughan, S. M.

Minardo, A.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

Newson, T. P.

Nikles, M.

Parker, T. R.

Robert, P. A.

Rogers, A. J.

Ropke, U.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Schroter, S.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Thevenaz, L.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

Wait, P. C.

Webb, D. J.

Willsch, R.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

Zeni, L.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin-scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10, 112–116 (1999).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16, 900–908 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Proc. SPIE (1)

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: PD, photodetector; PC, polarization controller; PS, polarization scrambler; C, circulator; and DAQ, data acquisition.

Fig. 2
Fig. 2

Sensing fiber and relative position of the pump and probe waves.

Fig. 3
Fig. 3

Measured Brillouin spectrum width as a function of distance with a CW pump power of 1 mW .

Fig. 4
Fig. 4

Measured Brillouin loss spectra for case 1 and case 2 at different CW pump powers: (a) 1, (b) 0.6 , (c) 0.3 , and (d) 0.1 mW .

Fig. 5
Fig. 5

Frequency error induced by the probe pulse amplification in the far end of 20 km sensing fiber at: (a) different CW pump power with a BFS difference of 44 MHz and (b) different BFS difference with a CW pump power of 0.1 mW .

Fig. 6
Fig. 6

Direct and differential Brillouin signal intensities for different pulses ( 10 100 ns ) at positions of (a) 1 and (b) 24 km , respectively; here, for the differential Brillouin signal, the pulse width refers to the longer pulse of the pulse pair.

Fig. 7
Fig. 7

(a) Direct and (b) differential Brillouin signals for different pulses ( 30 40 ns ) and pulse pairs ( 40 / 38 40 / 30 ns ), respectively.

Fig. 8
Fig. 8

Brillouin signal intensity and spatial resolution for different pulse pairs in Fig. 7b.

Fig. 9
Fig. 9

Measured Brillouin loss spectra of the stressed segment with 40 / 38 and 40 / 36 ns pulse pairs, respectively.

Metrics