Abstract

We constructed a circular multireflection (CMR) cell, allowing multireflection around the center of the cell. This is caused by a skewed adjustment of the entering beam (equivalent to a simple parallel shift/offset), avoiding the center of the cell, thus leading to multiple reflections. The experimental setup with a cell with an inner diameter of 6cm showed up to 17.5 beam passes on polished aluminum and attained path lengths up to 105cm, demonstrated by Fourier transform infrared measurements of CO2 gas between 2283 and 2400cm1. The circular concept, i.e., the centering of the reflections, is useful for absorption spectroscopy on trace gases and aerosols. The optical alignment of the cell can completely be performed from outside the experimental setup, e.g., an aerosol flow reactor or a vacuum system. The variation of the path length is easily possible by adjusting the position of the cell with respect to the entering light beam.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. U. White, “Long optical path of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  2. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964).
    [CrossRef]
  3. C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007).
    [CrossRef] [PubMed]
  4. A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
    [CrossRef]
  5. J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
    [CrossRef]
  6. J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
    [CrossRef]
  7. M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
    [CrossRef]

2010

J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
[CrossRef]

2008

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

2007

2004

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

1994

M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
[CrossRef]

1964

1942

Fochesatto, J. G.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Gevaux, D. G.

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

Green, A. M.

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

Herriott, D.

Hindelang, F. J.

M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
[CrossRef]

Horn, A. B.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Kaschow, R.

M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Krüger, H.-U.

J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
[CrossRef]

Last, D. J.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Nájera, J. J.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Ofner, J.

J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
[CrossRef]

Percival, C. J.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Phillips, C. C.

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

Robert, C.

Roberts, C.

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

Thoma, M. L.

M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
[CrossRef]

White, J. U.

Zetzsch, C.

J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Physica E

A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Physica E 20, 531–535 (2004).
[CrossRef]

Rev. Sci. Instrum.

J. J. Nájera, J. G. Fochesatto, D. J. Last, C. J. Percival, and A. B. Horn, “Infrared spectroscopic methods for the study of aerosol particles using White cell optics: development and characterization of a new aerosol flow tube,” Rev. Sci. Instrum. 79, 124102 (2008).
[CrossRef]

Shock Waves

M. L. Thoma, R. Kaschow, and F. J. Hindelang, “A multiple-reflection cell suited for absorption measurements in shock tubes,” Shock Waves 4, 51–53 (1994).
[CrossRef]

Z. Phys. Chem.

J. Ofner, H.-U. Krüger, and C. Zetzsch, “Time resolved infrared spectroscopy of formation and processing of secondary organic aerosols,” Z. Phys. Chem. 224, 1171–1183 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometric concept of CMR cell: A, entrance of the beam into the cell; B, point of first reflection; E, exit of the beam; d, offset of the beam; r, mirror radius of the CMR cell; β, angle of reflection; δ, angle between the offsets of the entering and leaving beams; and ε, angle between entrance A and exit E. The distance AC, which is limited by the size of the aperture at position A, limits the achievable number of reflections.

Fig. 2
Fig. 2

Design of CMR cell: (a) view from side showing cell design with aperture and (b) view from top with entrance and exit apertures at angle of ε = 165 ° and offset of 5 mm .

Fig. 3
Fig. 3

Path lengths calculated for the designed cell (Fig. 2)—this cell can be operated at offsets up to 12 mm and lengths of line AC down to 12 mm (both limited by the width of the apertures).

Fig. 4
Fig. 4

Circular multireflection cell mounted on an optical bench for Bruker FTIR spectrometers: the infrared beam is focused using mirrors A and B into the CMR cell C. Mirrors D and E focus the beam back into the spectrometer. The position of the cell, and hence the optical path length, can be varied by moving the translation stage F.

Fig. 5
Fig. 5

Measured optical path lengths and beam passes as a function of the offset of the beam. The overall beam throughput of the CMR cell is decreased by a magnitude of 100.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 n β = ε with n N .
d = r sin ε 4 n ,
β = 2 arcsin d r .
δ = ε β .
AB ¯ = 2 r sin 180 β 2 ,
L = 2 n AB ¯ .
AC ¯ = 2 r sin β .

Metrics