Abstract

Two time-division-multiplexed (TDM) sources based on fiber Bragg gratings were applied to monitor gas temperature, H2O mole fraction, and CH4 mole fraction using line-of-sight absorption spectroscopy in a practical high-pressure gas turbine combustor test article. Collectively, the two sources cycle through 14 wavelengths in the 13291667nm range every 33μs. Although it is based on absorption spectroscopy, this sensing technology is fundamentally different from typical diode-laser-based absorption sensors and has many advantages. Specifically, the TDM lasers allow efficient, flexible acquisition of discrete- wavelength information over a wide spectral range at very high speeds (typically 30kHz) and thereby provide a multiplicity of precise data at high speeds. For the present gas turbine application, the TDM source wavelengths were chosen using simulated temperature-difference spectra. This approach is used to select TDM wavelengths that are near the optimum values for precise temperature and species- concentration measurements. The application of TDM lasers for other measurements in high-pressure, turbulent reacting flows and for two-dimensional tomographic reconstruction of the temperature and species-concentration fields is also forecast.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Rea and R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used As a fast temperature-measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
    [CrossRef] [PubMed]
  2. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  3. J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
    [CrossRef]
  4. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
    [CrossRef]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and application for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef] [PubMed]
  6. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
    [CrossRef] [PubMed]
  7. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).
    [CrossRef] [PubMed]
  8. T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007).
    [CrossRef]
  9. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
    [CrossRef] [PubMed]
  10. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
    [CrossRef] [PubMed]
  11. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [CrossRef] [PubMed]
  12. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [CrossRef] [PubMed]
  13. T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
    [CrossRef] [PubMed]
  14. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008).
    [CrossRef] [PubMed]
  15. T. Kraetschmer and S. T. Sanders, “Simple multiwavelength time-division multiplexed laser for H2O absorption measurements,” in Conference On Lasers And Electro-Optics/Quantum Electronics And Laser Science Conference And Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL7.
    [PubMed]
  16. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186–4192 (2008).
    [CrossRef] [PubMed]
  17. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt. 47, 3751–3759 (2008).
    [CrossRef] [PubMed]
  18. S. T. Sanders, “Designs and applications of hyperspectral light sources,” in Laser Applications to Chemical, Security, and Environmental Analysis (Optical Society of America, 2008), paper LWC1.
  19. S. T. Sanders, “Frequency combs and hyperspectral sources for absorption spectroscopy,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CMH3.
    [CrossRef]
  20. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
    [CrossRef]
  21. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384(1968).
    [CrossRef]
  22. J. A. Filipa, J. W. Walewski, and S. T. Sanders, “Optical beating in time-resolved spectroscopy. Part II: Strategies for spectroscopic sensing in the presence of optical beating,” Appl. Spectrosc. 62, 230–237 (2008).
    [CrossRef] [PubMed]
  23. R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002(2008).
    [CrossRef]
  24. R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.
  25. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
    [CrossRef]
  26. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007).
    [CrossRef] [PubMed]
  27. L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
    [CrossRef]

2009 (2)

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (3)

2006 (4)

2005 (4)

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[CrossRef] [PubMed]

2004 (1)

2000 (1)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

1996 (1)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

1988 (1)

1968 (1)

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384(1968).
[CrossRef]

An, X.

Asano, M.

Auwera, J. Vander

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Baer, D. S.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Baldwin, J. A.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Barber, R. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Bartula, R. J.

R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002(2008).
[CrossRef]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
[CrossRef] [PubMed]

R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Brehm, M.

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Burns, I. S.

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

Cai, W.

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Caswell, A. W.

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Conrad, B. L.

R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Dagel, D.

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Filipa, J. A.

Flaud, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Fujimoto, J. G.

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gohle, C.

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gord, J. R.

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
[CrossRef] [PubMed]

Hagen, C. L.

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

Hanson, R. K.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

E. C. Rea and R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used As a fast temperature-measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

Harris, G. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Hartmann, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Herold, R. E.

Holzwarth, R.

Huber, R.

Hult, J.

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Jenkins, T. P.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Kaminski, C. F.

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

Keilmann, F.

Kraetschmer, T.

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
[CrossRef] [PubMed]

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008).
[CrossRef] [PubMed]

T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007).
[CrossRef]

T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
[CrossRef] [PubMed]

T. Kraetschmer and S. T. Sanders, “Simple multiwavelength time-division multiplexed laser for H2O absorption measurements,” in Conference On Lasers And Electro-Optics/Quantum Electronics And Laser Science Conference And Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL7.
[PubMed]

Kranendonk, L. A.

Lan, C.

T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007).
[CrossRef]

Ma, L.

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Nagali, V.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Neuroth, C. T.

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Okura, Y.

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Rahinov, I.

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

Rea, E. C.

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Roy, S.

Sanders, S. T.

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
[CrossRef] [PubMed]

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002(2008).
[CrossRef]

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008).
[CrossRef] [PubMed]

J. A. Filipa, J. W. Walewski, and S. T. Sanders, “Optical beating in time-resolved spectroscopy. Part II: Strategies for spectroscopic sensing in the presence of optical beating,” Appl. Spectrosc. 62, 230–237 (2008).
[CrossRef] [PubMed]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007).
[CrossRef] [PubMed]

T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
[CrossRef] [PubMed]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
[CrossRef] [PubMed]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

T. Kraetschmer and S. T. Sanders, “Simple multiwavelength time-division multiplexed laser for H2O absorption measurements,” in Conference On Lasers And Electro-Optics/Quantum Electronics And Laser Science Conference And Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL7.
[PubMed]

S. T. Sanders, “Designs and applications of hyperspectral light sources,” in Laser Applications to Chemical, Security, and Environmental Analysis (Optical Society of America, 2008), paper LWC1.

R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.

S. T. Sanders, “Frequency combs and hyperspectral sources for absorption spectroscopy,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CMH3.
[CrossRef]

Schliesser, A.

Shouse, D. T.

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

Smith, M. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Tennyson, J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Tolchenov, R. N.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Urata, Y.

van der Weide, D. W.

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Walewski, J. W.

Whiting, E. E.

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384(1968).
[CrossRef]

Wojtkowski, M.

Yamashita, S.

AIAA J. (1)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

IEEE Photonics Technol. Lett. (1)

T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007).
[CrossRef]

J. Propul. Power (1)

L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384(1968).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Opt. Eng. (1)

R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002(2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. Combust. Inst. (2)

J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005).
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Other (4)

R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.

T. Kraetschmer and S. T. Sanders, “Simple multiwavelength time-division multiplexed laser for H2O absorption measurements,” in Conference On Lasers And Electro-Optics/Quantum Electronics And Laser Science Conference And Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL7.
[PubMed]

S. T. Sanders, “Designs and applications of hyperspectral light sources,” in Laser Applications to Chemical, Security, and Environmental Analysis (Optical Society of America, 2008), paper LWC1.

S. T. Sanders, “Frequency combs and hyperspectral sources for absorption spectroscopy,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CMH3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Classification matrix for modern hyperspectral sources.

Fig. 2
Fig. 2

Top panel: sample difference spectrum used to guide wavelength selection for H 2 O absorption thermometry. Peaks represent features that exhibit increased absorption with increasing temperature, and valleys represent features that exhibit decreasing absorption with increasing temperature. Circles represent the design wavelengths for the H 2 O TDM source described herein. Bottom panel: values of difference spectra at four of the design wavelengths showing sensitivity versus temperature.

Fig. 3
Fig. 3

Simulated CH 4 spectrum showing the four wavelengths chosen for the fuel TDM laser.

Fig. 4
Fig. 4

Schematic of pulse-delay detection strategy showing the measurement beam (I) carried on the multimode fiber (MMF) and the reference beam ( I 0 ) that has been fiber delayed with single-mode fiber (SMF). Both of these paths are incident on a beam-splitter cube (BSC), with each output of the cube monitored with a photodetector.

Fig. 5
Fig. 5

Schematic of test article showing locations of fuel and water-vapor measurements and illustrating the implementation of fiber-to-fiber coupling in a practical device.

Fig. 6
Fig. 6

Raw single-cycle time trace of the ten-color H 2 O TDM laser utilizing pulse-delay referencing.

Fig. 7
Fig. 7

Postprocessing of a single TDM data frame to a ten-wavelength spectrum. Top panel: the I 0 trace is advanced 17 μs to align it with the I trace. Bottom panel: transmission ( I / I 0 ) for both detectors downstream of the BSC; these two signals differ because of uneven optical splitting in the cube. The average of the two detector signals is essentially polarization insensitive. The final transmission value at each of the ten wavelengths is calculated by taking the average of the points in each wavelength pulse (see inset).

Fig. 8
Fig. 8

Measured CH 4 absorbance versus time at the four fuel TDM wavelengths. Each measured spectral absorbance time series was corrected for baseline errors by subtracting the average absorbance over a narrow time window at the baseline time. This baseline time was chosen as a point in the time series where no CH 4 was present in the beam path, allowing for corrections of errors due to imperfect referencing and optical-transmission losses.

Fig. 9
Fig. 9

Temperature and CH 4 mole fraction results measured by the fuel TDM sensor at 10.5 bar s rig pressure. The fuel TDM sensor was designed to measure fuel vapor concentration given a thermocouple-based estimate of temperature ( 600 K ), but temperatures inferred from the TDM spectra demonstrate the possibility of fuel thermometry by this method.

Fig. 10
Fig. 10

Temperature and H 2 O mole fraction results measured with the H 2 O TDM sensor at 10.5 bar s rig pressure. Top panel: temperature inferred from the TDM measurement. A free parameter in the iterative baselining scheme was fixed by forcing the TDM temperature results to match a fast-response thermocouple at the indicated baseline time. The thermocouple data agree with the optical data within 80 K prior to fuel-valve opening and within 200 K after fuel-valve opening. The disagreements can be explained in terms of the different spatial locations probed by the thermocouple and the laser beam, as well as the faster response time of the optical measurement. Bottom panel: H 2 O mole fraction results; significant H 2 O present before the main fuel was turned on prompted the iterative baselining scheme.

Tables (3)

Tables Icon

Table 1 Wavelengths Used in the H 2 O TDM Laser System a

Tables Icon

Table 2 Wavelengths Used in the CH 4 TDM Laser System a

Tables Icon

Table 3 Fiber-Optic Access Design Parameters Selected by Aid of Ray Tracing a

Metrics