Abstract

We present a liquid level sensing system for cryogenic fluids based on an array of aluminum-coated fiber Bragg gratings written in high-attenuation fibers (HAFs) interrogated by frequency-shifted interferometry (FSI). The sensors are heated up optically through the absorption of light at the core of the HAF sections. The distinct thermal response of sensors in the liquid from that in the gas provides an unambiguous means to detect the liquid level. FSI allows the sensors to have overlapped spectral response, and, therefore, has the potential of accommodating a larger number of sensors in the array. The measurement of liquid nitrogen level using this system was experimentally demonstrated. The successful combination of aluminum-coated HAF Bragg grating sensors and the FSI technique promises a viable solution for liquid level sensor networks at cryogenic temperatures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
    [CrossRef]
  2. D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
    [CrossRef]
  3. R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
    [CrossRef]
  4. V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
    [CrossRef] [PubMed]
  5. C. P. Yakymyshyn and C. R. Pollock, “Differential absorption fiber-optic liquid level sensor,” J. Lightwave Technol. 5, 941–946 (1987).
    [CrossRef]
  6. C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
    [CrossRef]
  7. T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
    [CrossRef]
  8. T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
    [CrossRef] [PubMed]
  9. A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
    [CrossRef]
  10. P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
    [CrossRef]
  11. K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17, 998–1004 (2006).
    [CrossRef]
  12. A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
    [CrossRef]
  13. S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26, 1224–1226 (2001).
    [CrossRef]
  14. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
    [CrossRef]
  15. S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
    [CrossRef]
  16. M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
    [CrossRef]
  17. R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
    [CrossRef]
  18. S. Abad, M. López-Amo, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Fiber Bragg grating-based self-referencing technique for wavelength-multiplexed intensity sensors,” Opt. Lett. 27, 222–224 (2002).
    [CrossRef]
  19. G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightwave Technol. 19, 687–699 (2001).
    [CrossRef]
  20. F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
    [CrossRef]
  21. F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
    [CrossRef]
  22. K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
    [CrossRef]
  23. K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
    [CrossRef]
  24. M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
    [CrossRef]
  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  26. T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

2009 (3)

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
[CrossRef]

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
[CrossRef]

2008 (1)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

2007 (4)

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

2006 (1)

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17, 998–1004 (2006).
[CrossRef]

2005 (2)

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

2004 (3)

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
[CrossRef]

2003 (1)

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

1999 (1)

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

1997 (2)

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1995 (1)

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
[CrossRef]

1994 (1)

R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
[CrossRef]

1992 (1)

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

1987 (1)

C. P. Yakymyshyn and C. R. Pollock, “Differential absorption fiber-optic liquid level sensor,” J. Lightwave Technol. 5, 941–946 (1987).
[CrossRef]

Abad, S.

Aiestaran, P.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Araújo, F. M.

Arrue, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Berkoff, T. A.

R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
[CrossRef]

Bhattarai, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

Buric, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

Buric, M. P.

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

Cashdollar, L. J.

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

Chen, K. P.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

Chen, N.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Chen, S.

A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
[CrossRef]

Chen, T.

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

Claus, R. O.

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

Cranch, G. A.

Cui, Y.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Dawkins, K.

R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
[CrossRef]

Dong, X.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Dou, Q.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Ferreira, L. A.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gonzalo, A. B.

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

Gunther, M. F.

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

Guo, T.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Hancock, N. H.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
[CrossRef]

He, K.

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Hilton, D. K.

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

Huang, G.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

James, S. W.

Jauregui, C.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Jewart, C.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

Joshi, S. G.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

Kakanakov, R.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

Kassamakov, I.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

Kazemi, A. A.

A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
[CrossRef]

Khaliq, S.

Khotiaintsev, S. N.

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17, 998–1004 (2006).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kuznetsov, S. A.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

Kuznetsova, I. E.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Li, Z.

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Liu, Y.

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

Lomer, M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

López-Amo, M.

López-Higuera, J. M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Lü, T.

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Luukkala, M.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

Maklad, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

McMillen, B.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

Montalvo, J.

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

Murphy, K. A.

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

Nash, P. J.

Northway, B. W.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
[CrossRef]

Osborne, R.

R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
[CrossRef]

Panek, J. S.

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Pollock, C. R.

C. P. Yakymyshyn and C. R. Pollock, “Differential absorption fiber-optic liquid level sensor,” J. Lightwave Technol. 5, 941–946 (1987).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qi, B.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
[CrossRef]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

Qian, L.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
[CrossRef]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

Raatikainen, P.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

Romo-Medrano, K. E.

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17, 998–1004 (2006).
[CrossRef]

Sakharov, V. E.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

Santos, J. L.

Smith, M. R.

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

Swinehart, P. R.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

Tatam, R. P.

Tran-Cong, T.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
[CrossRef]

Van Sciver, S. W.

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

Vargas, S.

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

Vázquez, C.

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

Wang, A.

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

Ward, M.

R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
[CrossRef]

Weis, R. S.

R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
[CrossRef]

Xia, D.

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Xu, W.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

Xue, L.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Yakymyshyn, C. P.

C. P. Yakymyshyn and C. R. Pollock, “Differential absorption fiber-optic liquid level sensor,” J. Lightwave Technol. 5, 941–946 (1987).
[CrossRef]

Yang, C.

A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
[CrossRef]

Ye, F.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
[CrossRef]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

Yun, B.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Zaitsev, B. D.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

Zhang, G.

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Zhang, H.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Zhao, Q.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Zubia, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Appl. Phys. Lett. (1)

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143502 (2005).
[CrossRef]

Cryogenics (1)

D. K. Hilton, J. S. Panek, M. R. Smith, and S. W. Van Sciver, “A capacitive liquid helium level sensor instrument,” Cryogenics 39, 485–487 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (6)

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

R. S. Weis, A. D. Kersey, and T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photonics Technol. Lett. 6, 1469–1472 (1994).
[CrossRef]

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photonics Technol. Lett. 19, 255–257 (2007).
[CrossRef]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20, 1488–1490 (2008).
[CrossRef]

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

J. Lightwave Technol. (4)

G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightwave Technol. 19, 687–699 (2001).
[CrossRef]

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 2449 (2009).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

C. P. Yakymyshyn and C. R. Pollock, “Differential absorption fiber-optic liquid level sensor,” J. Lightwave Technol. 5, 941–946 (1987).
[CrossRef]

Meas. Sci. Technol. (2)

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17, 998–1004 (2006).
[CrossRef]

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6, 85–93 (1995).
[CrossRef]

Opt. Eng. (1)

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

A. A. Kazemi, C. Yang, and S. Chen, “Fiber optic cryogenic liquid level detection system for space applications,” Proc. SPIE 7314, 73140A (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Lü, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Perot cavity fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80, 033104 (2009).
[CrossRef] [PubMed]

Sens. Actuators A, Phys. (5)

A. Wang, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 35, 161–164 (1992).
[CrossRef]

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, “Fiber-optic liquid-level sensor,” Sens. Actuators A, Phys. 58, 93–97 (1997).
[CrossRef]

C. Vázquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sens. Actuators A, Phys. 116, 22–32(2004).
[CrossRef]

R. Osborne, M. Ward, and K. Dawkins, “A micro-machined acoustic sensor array for fuel level indication,” Sens. Actuators A, Phys. 115, 385–391 (2004).
[CrossRef]

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sens. Actuators A, Phys. 137, 68–73(2007).
[CrossRef]

Ultrasonics (1)

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, “Liquid level sensor using ultrasonic Lamb waves,” Ultrasonics 41, 319–322 (2003).
[CrossRef] [PubMed]

Other (1)

T. Chen, M. P. Buric, K. P. Chen, P. R. Swinehart, and M. Maklad, “Active fiber hydrogen sensors for low-temperature operation,” in Conference on Lasers and Electro-Optics (OSA, 2009), paper CThE4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design of Al-coated HAFBG sensor and its principle of operation.

Fig. 2
Fig. 2

SEM image of a sample HAFBG sensor’s cross section.

Fig. 3
Fig. 3

Fiber frequency-shifted Mach–Zehnder interferometer with multiple reflection sites at its output.

Fig. 4
Fig. 4

Experimental setup of a liquid level sensing system based on an array of Al-coated HAFBG sensors multiplexed by FSI. TLS, tunable laser source; BD, balanced detector; C i , 50 / 50 fiber directional couplers; PC, polarization controller; AOM, acousto-optic modulator; PM, power meter; G i , Al-coated HAFBG sensors.

Fig. 5
Fig. 5

Al-coated HAFBG sensor array in the liquid nitrogen dewar.

Fig. 6
Fig. 6

Reflection spectra of Al-coated HAFBG sensors when they were fully emerged in liquid nitrogen measured by FSI (dotted curve, sensor spectra without in-fiber heating; solid curve, sensor spectra with in-fiber heating).

Fig. 7
Fig. 7

Reflection spectra of heated Al-coated HAFBG sensors as the sensor array was pulled out of liquid nitrogen (dotted curve, sensor reflection spectra measured by FSI when all the sensors were heated in liquid nitrogen). (a) G 1 was above the liquid nitrogen while G 2 and G 3 were in the liquid nitrogen; (b) G 1 and G 2 were above the liquid nitrogen while G 3 was in the liquid nitrogen; (c) all the sensors were above the liquid nitrogen.

Fig. 8
Fig. 8

Reflection spectrum of a HAFBG sensor showing a reflection peak split when it is heated at the boundary between liquid nitrogen and air.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ i = 2 π n · 2 L i c f ,
Δ I i = 1 N A i cos [ 2 π 2 n L i c f ] = i = 1 N A i cos [ 2 π · F i · f ] ,
A i ( λ ) = [ j = 1 i 1 T j 2 ( λ ) ] · R i ( λ ) .
T measure = ( τ · Δ f f step + T process ) · Δ λ λ step ,

Metrics