Abstract

This paper proposes the use of predictive analog-to-digital converters (ADC) to handle dynamic range issues in Fourier-transform spectrometers. Several predictive approaches are proposed, and one is implemented experimentally to show that the technique works. A system was implemented with 16 bit (13 bits effective) ADCs and digital-to-analog converters (DACs) operated at 8 bits to provide a comparison basis. Measurements of a blackbody at 900°C performed using the setup show a 13 bit effective performance, limited by the input noise of the data acquisition card.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
    [CrossRef]
  2. G. Keppel-Aleks, G. C. Toon, P. O. Wennberg, and N. M. Deutscher, “Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry,” Appl. Opt. 46, 4774–4779 (2007).
    [CrossRef] [PubMed]
  3. Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
    [CrossRef]
  4. J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
    [CrossRef]
  5. J.-M. Thériault, E. Puckrin, F. Bouffard, and B. Déry, “Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry: results at a range of 1.5km,” Appl. Opt. 43, 1425–1434 (2004).
    [CrossRef] [PubMed]
  6. S. K. Tewksbury, “Apparatus for analog to digital conversion,” U.S. patent 4,107,669 (15 August 1978).
  7. A. Zachor and S. M. Aaronson, “Delay compensation: its effects in reducing sampling errors in Fourier spectroscopy,” Appl. Opt. 18, 68–75 (1979).
    [CrossRef] [PubMed]

2009 (1)

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

2007 (1)

2004 (1)

2002 (1)

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

1997 (1)

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

1979 (1)

Aaronson, S. M.

Baryshev, A.

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Baselmans, J.

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Bouffard, F.

Bradette, C.

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Chamberland, M.

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Déry, B.

Deutscher, N. M.

Dube, S.

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

Dutil, Y.

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

Giroux, J.

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Gu¨sten, R.

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Keppel-Aleks, G.

Klein, B.

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Lantagne, S.

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

Poulin, R. H.

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

Puckrin, E.

Tewksbury, S. K.

S. K. Tewksbury, “Apparatus for analog to digital conversion,” U.S. patent 4,107,669 (15 August 1978).

Thériault, J.-M.

J.-M. Thériault, E. Puckrin, F. Bouffard, and B. Déry, “Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry: results at a range of 1.5km,” Appl. Opt. 43, 1425–1434 (2004).
[CrossRef] [PubMed]

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Toon, G. C.

Villemaire, A.

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Wennberg, P. O.

Yates, S.

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Zachor, A.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Yates, A. Baryshev, J. Baselmans, B. Klein, and R. Gu¨sten, “Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors,” Appl. Phys. Lett. 95, 042504 (2009).
[CrossRef]

Proc. SPIE (2)

Y. Dutil, S. Lantagne, S. Dube, and R. H. Poulin, “ACE-FTS level 0 to 1 data processing,” Proc. SPIE 4814, 102–110(2002).
[CrossRef]

J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, and J. Giroux, “Differential detection with a double-beam interferometer,” Proc. SPIE 3082, 65–75 (1997).
[CrossRef]

Other (1)

S. K. Tewksbury, “Apparatus for analog to digital conversion,” U.S. patent 4,107,669 (15 August 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram for a predictive ADC.

Fig. 2
Fig. 2

Block diagram of the implementation.

Fig. 3
Fig. 3

Oscilloscope trace of the complete system. This trace was taken at step 2 and shows the relation between the incoming IGM, the DAC signal, and the sampling instants.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Blackbody interferogram and spectrum.

Fig. 6
Fig. 6

One typical subtraction result.

Fig. 7
Fig. 7

Spectra of IGMs sampled by different techniques. The spectra of 8 bit predictive ADC and 16 bit ADC have been slightly offset because, otherwise, they would completely overlap, indicating that the maximum performance using this system has been reached.

Fig. 8
Fig. 8

RMS error on the IGM as a function of the number of bits for a 20 V full-range ADC. The performance achieved by the predictive ADC was limited by the system’s input noise.

Fig. 9
Fig. 9

Subtraction result with added prediction error.

Fig. 10
Fig. 10

Spectrum of reconstructed signals using V 1 D and V 1 D + V tone as the prediction.

Tables (1)

Tables Icon

Table 1 Electronics, Instrument Parameters, and Measurements Characteristics

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V 1 D = G 1 ( V 1 + ϵ input 1 ) + ϵ 1 ,
V 2 D = G 2 ( V 2 G 3 V 1 D + ϵ input 2 ) + ϵ 2 ,
V OUT = V 2 D G ˜ 2 + G ˜ 3 V 1 D ,
V out = G 2 G ˜ 2 V 2 + ( G ˜ 3 G 2 G 3 G ˜ 2 ) V 1 D + G 2 G ˜ 2 ϵ input 2 + 1 G ˜ 2 ϵ 2 .
V out ( 1 + η 3 ) V 2 + ( η 2 + η 3 ) ϵ p + ϵ input 2 + 1 G 2 ϵ 2 .
( η 2 + η 3 ) V G 2 < V G 2 2 n + 1 ( η 2 + η 3 ) < 1 2 n + 1 .

Metrics