Abstract

We have already reported that after an injection for euthanasia, the signal intensity of optical coherence tomography (OCT) images are 2.7 times increased before cardiac arrest (CA) using OCT and rat brains without temperature control to show the potential of OCT to monitor tissue viability in brains [Appl. Opt. 48, 4354 (2009)]. In this paper, we similarly measured maintaining the primary temperature of rat brains. It was confirmed that when maintaining the primary temperature, the time courses of the ratios of signal intensity (RSIs) were almost the same as those without temperature control. RSIs after CA varied from 1.6 to 4.5 and depended on positions measured in tissues. These results mean that the OCT technique has clinical potential for applications to monitor or diagnose a focal degraded area, such as cerebral infarctions due to focal ischemia in brains.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate
Appl. Opt. 49(30) 5686-5696 (2010)

Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography

Manabu Sato, Molly Subhash Hrebesh, and Izumi Nishidate
Appl. Opt. 48(22) 4354-4364 (2009)

Variations in signal intensity with periodical temperature changes in vivo in rat brain: analysis using wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Tetsushi Kitano, Takashi Tsunenari, and Izumi Nishidate
Appl. Opt. 51(10) 1436-1445 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription