Abstract

We present a loss-reduced photonic liquid-crystal fiber (PLCF) using the noncontact photoalignment method. The photoexcited and adsorbed azo dye on the capillary surface of a PLCF induces uniform and highly ordered orientation of the liquid crystal (LC). The anchoring force of the photoalignment effect is combined with that generated by surface boundary conditions of the photonic crystal fiber (PCF). Transmission loss resulting from LC scattering can be reduced from 2.8 to 1.3db/cm within 10min. This photoinduced alignment yields a permanent boundary for the LC in the PCF that reduces scattering loss and can be further modulated by electrical fields. The electrical tunable effect and fast dynamic response of the photoaligned PLCF are also presented. This low-loss PLCF can be applied conveniently in various PLCF devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
    [CrossRef] [PubMed]
  2. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
    [CrossRef] [PubMed]
  3. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
    [CrossRef] [PubMed]
  4. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47, 5321–5324 (2008).
    [CrossRef] [PubMed]
  5. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
    [CrossRef] [PubMed]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.
  7. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
    [CrossRef] [PubMed]
  8. T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
    [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
    [CrossRef] [PubMed]
  10. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
    [CrossRef]
  11. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
    [CrossRef] [PubMed]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
    [CrossRef] [PubMed]
  13. T. T. Alkeskjold, and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
    [CrossRef] [PubMed]
  14. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183(2004).
    [CrossRef]
  15. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
    [CrossRef]
  16. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
    [CrossRef] [PubMed]
  17. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16, 19375–19381 (2008).
    [CrossRef]

2009 (2)

2008 (4)

2007 (3)

2006 (1)

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

2005 (2)

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

2004 (2)

2003 (2)

Alkeskjold, T. T.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold, and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef] [PubMed]

Anawati, A.

Bang, O.

Bartelt, H.

Bassi, P.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Bjarklev, A.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold, and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[CrossRef] [PubMed]

Borelli, E.

Broeng, J.

Czapla, A.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Dabrowski, R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Domanski, A. W.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Dománski, A. W.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Dong, X.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183(2004).
[CrossRef]

Du, J.

Eggleton, B. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Ertman, S.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Eskildsen, L.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Hermann, D. S.

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Kitzerow, H.-S.

Kobelke, J.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Laegsgaard, J.

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Li, J.

Liu, B.

Liu, Y.

Lorenz, A.

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183(2004).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Noordegraaf, D.

Nowecka, K.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Rindorf, L.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Schwuchow, A.

Scolari, L.

Szaniawska, K.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Tanggaard Alkeskjold, T.

Tartarini, G.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Wang, Z.

Wei, L.

Weirich, J.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Wojcik, J.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Wójcik, J.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Wolinski, T. R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Wolínski, T. R.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Wu, S. T.

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183(2004).
[CrossRef]

Yuan, W.

Zou, B.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183(2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Meas. Sci. Technol. (2)

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Tech. Dig., Postconference ed. (Optical Society of America, 2002), pp. 466–468.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental and measurement setup.

Fig. 2
Fig. 2

Pictures of the PLCF with (a) nonphoto alignment and (b) photoalignment.

Fig. 3
Fig. 3

(a) The transmission spectrum of the photoaligned PLCF with different pumping times of 0, 1, 3, 8, and 30 min , respectively. (b) The loss difference versus pumping time with different pumping intensities of 80, 160, and 320 mW / cm 2 , respectively.

Fig. 4
Fig. 4

The transmission spectrum of (a) a photoaligned and (b) nonaligned PLCF with voltages applied of 0, 100, 200, 300, and 400 V , respectively.

Fig. 5
Fig. 5

Measured PLCF rise and full times between (a) nonaligned and (b) aligned PLCFs.

Metrics