Abstract

Dynamic holography using spatial light modulators is a very flexible technique that offers various new applications compared to static holography. We give an overview on the technical background of dynamic holography focusing on pixelated spatial light modulators and their technical restrictions, and we present a selection of the numerous applications of dynamic holography.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
  2. W. Osten, “Holography in new shoes: a digital-analogue interface,” in Proceedings of IEEE, LEOS Annual Meeting (IEEE, 2006), pp. 72–73.
  3. C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Suppression of undesired diffraction orders of binary phase holograms,” Appl. Opt. 47, 3994–3998 (2008).
    [CrossRef]
  4. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  6. J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
  7. J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.
  8. D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995).
    [CrossRef]
  9. E. Lueder, Liquid Crystal Displays (Wiley, 2001).
  10. A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
    [CrossRef]
  11. C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
    [CrossRef]
  12. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479–4486 (2008).
    [CrossRef]
  13. H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996).
    [CrossRef]
  14. H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
    [CrossRef]
  15. P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
    [CrossRef]
  16. V. Durán, J. Lancis, E. Tajahuerce, and V. Climent, “Poincaré sphere method for optimizing the phase modulation response of a twisted nematic liquid crystal display,” J. Display Technol. 3, 9–14 (2007).
  17. C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).
  18. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993).
    [CrossRef]
  19. V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso, “Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states,” Opt. Express 14, 5607–5616 (2006).
    [CrossRef]
  20. X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
    [CrossRef]
  21. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [CrossRef]
  22. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21, 1996–2008 (2004).
    [CrossRef]
  23. A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. optimization of the modulation diffraction efficiency,” Opt. Express 13, 2111–2119(2005).
    [CrossRef]
  24. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267–4274 (2008).
    [CrossRef]
  25. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008).
    [CrossRef]
  26. M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.
  27. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278–6284 (2004).
    [CrossRef]
  28. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005).
    [CrossRef]
  29. D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45, 6689–6693 (2006).
    [CrossRef]
  30. T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).
  31. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009).
    [CrossRef]
  32. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
    [CrossRef]
  33. S.-H. Lee and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005).
    [CrossRef]
  34. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
    [CrossRef]
  35. A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
    [CrossRef]
  36. J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
    [CrossRef]
  37. J. Grimmett, “Thermal analysis of a light reflecting digital micromirror device,” in Proceedings of IEEE, International Systems Packaging Symposium (IEEE, 1997) pp. 242–247.
  38. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
  39. M. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in Proceedings of IEEE, Reliability Physics Symposium (IEEE, 1998) pp. 9–16.
  40. J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.
  41. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).
  42. M. Seldowitz, J. Allebach, and D. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
    [CrossRef]
  43. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).
  44. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [CrossRef]
  45. J. Fienup, “Iterative method applied to image reconstruction and to computer–generated holograms,” Opt. Eng. 19, 297–305 (1980).
  46. B. K. Jennison and J. P. Allebach, “Analysis of the leakage from computer-generated holograms synthesized by direct binary search,” J. Opt. Soc. Am. A 6, 234–243 (1989).
    [CrossRef]
  47. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Efficient design of direct-binary-search computer-generated holograms,” J. Opt. Soc. Am. A 8, 652–660 (1991).
    [CrossRef]
  48. T. Dresel, M. Beyerlein, and J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996).
    [CrossRef]
  49. F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989).
    [CrossRef]
  50. T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
    [CrossRef]
  51. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
    [CrossRef]
  52. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665–1670 (2004).
    [CrossRef]
  53. J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).
  54. D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
    [CrossRef]
  55. J.-Y. Zhuang and O. K. Ersoy, “Fast decimation-in-frequency direct binary search algorithms for synthesis of computer-generated holograms,” J. Opt. Soc. Am. A 11, 135–143 (1994).
    [CrossRef]
  56. V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996).
    [CrossRef]
  57. G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990).
    [CrossRef]
  58. S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [CrossRef]
  59. M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996).
    [CrossRef]
  60. L. Ingber, “Very fast simulated re-annealing,” Math. Comput. Model. 12, 967–973 (1989).
    [CrossRef]
  61. D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617–4624 (2006).
    [CrossRef]
  62. A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992).
    [CrossRef]
  63. M. Pahlke, “Auslegung hocheffizienter, computergenerierter Beugungsstrukturen zur Strahlformung,” Ph. D. thesis (University of Stuttgart, 2000), ISBN 3-923560-39-7.
  64. C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008).
    [CrossRef]
  65. T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993).
    [CrossRef]
  66. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13, 1923–1932 (2005).
    [CrossRef]
  67. Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.
  68. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
    [CrossRef]
  69. N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
    [CrossRef]
  70. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).
  71. M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).
  72. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
    [CrossRef]
  73. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
    [CrossRef]
  74. F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.
  75. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14, 2101–2107 (2006).
    [CrossRef]
  76. F. Belloni and S. Monneret, “Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping,” Appl. Opt. 46, 4587–4593 (2007).
    [CrossRef]
  77. C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).
  78. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34, 3165–3171 (1995).
    [CrossRef]
  79. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330–1339 (2009).
    [CrossRef]
  80. D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.
  81. J. P. Allebach, N. C. Gallagher, and B. Liu, “Aliasing error in digital holography,” Appl. Opt. 15, 2183–2188 (1976).
    [CrossRef]
  82. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).
    [CrossRef]
  83. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
  84. W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
    [CrossRef]
  85. T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).
  86. T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
    [CrossRef]
  87. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009).
    [CrossRef]
  88. K. L. Tan, W. A. Crossland, and R. J. Mears, “Dynamic holography for optical interconnections. I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A 18, 195–204(2001).
    [CrossRef]
  89. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960(2000).
    [CrossRef]
  90. Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, “Investigation of optical testing with a phase-only liquid crystal spatial light modulator,” Opt. Express 13, 1059–1065 (2005).
    [CrossRef]
  91. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004).
    [CrossRef]
  92. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).
  93. F. Yu, Optical Information Processing: Optical Signal Processing—Fourier Optics (Wiley, 1983).
  94. Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).
  95. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
    [CrossRef]
  96. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
    [CrossRef]
  97. J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
    [CrossRef]
  98. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef]
  99. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [CrossRef]
  100. N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
    [CrossRef]
  101. D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett. 28, 740–742 (2003).
    [CrossRef]
  102. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
  103. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
    [CrossRef]
  104. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [CrossRef]
  105. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
    [CrossRef]
  106. T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).
  107. S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).
  108. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16, 15942–15948 (2008).
    [CrossRef]
  109. D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).
  110. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282(2001).
    [CrossRef]
  111. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
  112. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
    [CrossRef]
  113. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005).
    [CrossRef]
  114. C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).
  115. A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
    [CrossRef]
  116. R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
  117. W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
  118. E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).
  119. V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
  120. M. J. Connelly, P. M. Szecówka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera,” Opt. Lett. 33, 330–332 (2008).
    [CrossRef]
  121. F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.
  122. U. Gopinathan, D. S. Monaghan, B. M. Hennelly, C. P. Mc Elhinney, D. P. Kelly, J. McDonald, T. J. Naughton, and J. T. Sheridan, “A projection system for real world three-dimensional objects using spatial light modulators,” J. Display Technol. 4, 254–261 (2008).
  123. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 20 micron pixel-pitch reflective liquid-crystal display by use of a light emitting diode refrence light,” Opt. Lett. 27, 1406–1408 (2002).
    [CrossRef]
  124. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16, 5338–5349 (2008).
    [CrossRef]
  125. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
    [CrossRef]
  126. T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

2009

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009).
[CrossRef]

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).

D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
[CrossRef]

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330–1339 (2009).
[CrossRef]

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009).
[CrossRef]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
[CrossRef]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
[CrossRef]

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

2008

U. Gopinathan, D. S. Monaghan, B. M. Hennelly, C. P. Mc Elhinney, D. P. Kelly, J. McDonald, T. J. Naughton, and J. T. Sheridan, “A projection system for real world three-dimensional objects using spatial light modulators,” J. Display Technol. 4, 254–261 (2008).

D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16, 5338–5349 (2008).
[CrossRef]

M. J. Connelly, P. M. Szecówka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera,” Opt. Lett. 33, 330–332 (2008).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16, 15942–15948 (2008).
[CrossRef]

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[CrossRef]

Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.

C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008).
[CrossRef]

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267–4274 (2008).
[CrossRef]

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008).
[CrossRef]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479–4486 (2008).
[CrossRef]

C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Suppression of undesired diffraction orders of binary phase holograms,” Appl. Opt. 47, 3994–3998 (2008).
[CrossRef]

2007

2006

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14, 2101–2107 (2006).
[CrossRef]

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
[CrossRef]

K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[CrossRef]

V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso, “Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states,” Opt. Express 14, 5607–5616 (2006).
[CrossRef]

D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45, 6689–6693 (2006).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

W. Osten, “Holography in new shoes: a digital-analogue interface,” in Proceedings of IEEE, LEOS Annual Meeting (IEEE, 2006), pp. 72–73.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617–4624 (2006).
[CrossRef]

2005

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005).
[CrossRef]

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[CrossRef]

J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

S.-H. Lee and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005).
[CrossRef]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. optimization of the modulation diffraction efficiency,” Opt. Express 13, 2111–2119(2005).
[CrossRef]

Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, “Investigation of optical testing with a phase-only liquid crystal spatial light modulator,” Opt. Express 13, 1059–1065 (2005).
[CrossRef]

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).

T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13, 1923–1932 (2005).
[CrossRef]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005).
[CrossRef]

2004

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).

S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004).
[CrossRef]

B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
[CrossRef]

U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21, 1996–2008 (2004).
[CrossRef]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
[CrossRef]

I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278–6284 (2004).
[CrossRef]

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665–1670 (2004).
[CrossRef]

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
[CrossRef]

2003

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett. 28, 740–742 (2003).
[CrossRef]

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

2002

T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 20 micron pixel-pitch reflective liquid-crystal display by use of a light emitting diode refrence light,” Opt. Lett. 27, 1406–1408 (2002).
[CrossRef]

W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
[CrossRef]

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[CrossRef]

2001

E. Lueder, Liquid Crystal Displays (Wiley, 2001).

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

K. L. Tan, W. A. Crossland, and R. J. Mears, “Dynamic holography for optical interconnections. I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A 18, 195–204(2001).
[CrossRef]

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282(2001).
[CrossRef]

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960(2000).
[CrossRef]

M. Pahlke, “Auslegung hocheffizienter, computergenerierter Beugungsstrukturen zur Strahlformung,” Ph. D. thesis (University of Stuttgart, 2000), ISBN 3-923560-39-7.

1999

T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[CrossRef]

1998

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).

M. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in Proceedings of IEEE, Reliability Physics Symposium (IEEE, 1998) pp. 9–16.

1997

J. Grimmett, “Thermal analysis of a light reflecting digital micromirror device,” in Proceedings of IEEE, International Systems Packaging Symposium (IEEE, 1997) pp. 242–247.

T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
[CrossRef]

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

1996

H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996).
[CrossRef]

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996).
[CrossRef]

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

T. Dresel, M. Beyerlein, and J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996).
[CrossRef]

N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

1995

J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34, 3165–3171 (1995).
[CrossRef]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995).
[CrossRef]

1994

1993

T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993).
[CrossRef]

H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
[CrossRef]

J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993).
[CrossRef]

D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992).
[CrossRef]

1991

1990

G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990).
[CrossRef]

1989

1988

1987

1986

A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
[CrossRef]

1983

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

F. Yu, Optical Information Processing: Optical Signal Processing—Fourier Optics (Wiley, 1983).

1980

J. Fienup, “Iterative method applied to image reconstruction and to computer–generated holograms,” Opt. Eng. 19, 297–305 (1980).

1976

1972

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

1962

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

Aagedal, H.

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

Abookasis, D.

Allebach, J.

Allebach, J. P.

Allen, L.

N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Amako, J.

Andilla, J.

Apter, B.

Aranchuk, V.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

Ast, C. V.

A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
[CrossRef]

Backsten, J.

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
[CrossRef]

Bahat-Treidel, E.

Batikoff, A.

Baumbach, T.

Belloni, F.

Bengtsson, J.

D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
[CrossRef]

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

Bernet, S.

Beth, T.

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

Beyerlein, M.

Boedecker, S.

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

Boutenko, V.

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996).
[CrossRef]

Bradley, M. R.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Bräuer, R.

Bright, V. M.

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

Brown, C. V.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[CrossRef]

Bryngdahl, O.

Burgett, R. D.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Burla, A.

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

Campos, J.

Cao, Z.

Cathey, W. T.

Changkakoti, R.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).

Chevallier, R.

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996).
[CrossRef]

Chipman, R. A.

Cho, H.-J.

Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.

Christmas, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

Clark, M.

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996).
[CrossRef]

Clark, R. L.

Climent, V.

Cole, D. G.

Collings, N.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

Connelly, M. J.

Cooper, J.

Courtial, J.

Crossland, W.

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

Crossland, W. A.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

K. L. Tan, W. A. Crossland, and R. J. Mears, “Dynamic holography for optical interconnections. I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A 18, 195–204(2001).
[CrossRef]

Cupido, E.

E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).

Curtis, J. E.

J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
[CrossRef]

Daria, V. R.

de la Tocnaye, J.

H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996).
[CrossRef]

Deshpande, S. V.

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

Dholakia, K.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

DiLeonardo, R.

Dillier, N.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Douglass, M.

M. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in Proceedings of IEEE, Reliability Physics Symposium (IEEE, 1998) pp. 9–16.

Dowski, E. R.

Dräbenstedt, A.

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

Dresel, T.

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Dueck, G.

G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990).
[CrossRef]

Dultz, W.

H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
[CrossRef]

Duncan, M.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Durán, V.

Efron, U.

Elston, S. J.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[CrossRef]

Engstroem, D.

Engström, D.

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

Ersoy, O. K.

Famini, H.

Fernández, E.

Fernández-Alonso, M.

Ferrazzini, M.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Fienup, J.

J. Fienup, “Iterative method applied to image reconstruction and to computer–generated holograms,” Opt. Eng. 19, 297–305 (1980).

Fisch, U.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Frank, A.

D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
[CrossRef]

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

Fürhapter, S.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

Gale, R.

D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995).
[CrossRef]

Gallagher, N. C.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Gehner, A.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

Gelatt, C.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

Georgiou, A.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

Gerchberg, R.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Gibson, G.

Glückstad, J.

Godo, H.

Goksoer, M.

Goksör, M.

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

Golan, L.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gopinathan, U.

Grier, D.

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
[CrossRef]

Grier, D. G.

Grimmett, J.

J. Grimmett, “Thermal analysis of a light reflecting digital micromirror device,” in Proceedings of IEEE, International Systems Packaging Symposium (IEEE, 1997) pp. 242–247.

Gross, H.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).

Gulari, E.

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

Hafner, J.

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

Haist, T.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).

C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008).
[CrossRef]

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[CrossRef]

T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
[CrossRef]

Hall, T. J.

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992).
[CrossRef]

Hamam, H.

H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996).
[CrossRef]

Hariharan, P.

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

He, L.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

Hennelly, B. M.

Hermerschmidt, A.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

Herzig, H. P.

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).

Hess, C.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

Hess, C. F.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Hong, Q.

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

Horiuchi, M.

Hu, L.

Huang, Y.

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

Huber, A. M.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Hupfer, W. J.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

Ichihashi, Y.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

Iemmi, C.

Ingber, L.

L. Ingber, “Very fast simulated re-annealing,” Math. Comput. Model. 12, 967–973 (1989).
[CrossRef]

Ito, T.

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Jallapuram, R.

Jenness, N. J.

Jennison, B. K.

Jesacher, A.

Johannes, M. S.

Jordan, P.

Jüptner, W.

Kang, H.

F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.

Kanicki, J.

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

Kelly, D. P.

Kim, D.-W.

Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.

Kirk, A. G.

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992).
[CrossRef]

Kirkpatrick, S.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

Klein, S.

H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
[CrossRef]

Kohler, C.

Komarcevic, M.

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
[CrossRef]

Kriezis, Em. E.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[CrossRef]

Kruzelecky, R. V.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).

Kujawinska, M.

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

Lackner, A.

A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
[CrossRef]

Laczik, Z. J.

Ladavac, K.

Lal, A.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

Lal, A. K.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Lancis, J.

Leach, J.

Lee, S.

Lee, S.-H.

Lee, Y. C.

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

Leith, E. N.

Li, D.

Liesener, J.

J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

Linder, T.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Liu, B.

Liu, J.

Liu, Y.

Lizana, A.

Lu, J.

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

Lueder, E.

E. Lueder, Liquid Crystal Displays (Wiley, 2001).

Margerum, J.

A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
[CrossRef]

Márquez, A.

Martin, S.

Martín-Badosa, E.

Masuda, N.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13, 1923–1932 (2005).
[CrossRef]

Maurer, C.

Mc Elhinney, C. P.

McDonald, J.

McIntyre, T. J.

Mears, R.

D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.

Mears, R. J.

Melton, J.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Miura, H.

Miura, J.

Miyamoto, Y.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

Mogensen, P. C.

Monaghan, D. S.

Monk, D.

D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995).
[CrossRef]

Monneret, S.

Montes-Usategui, M.

Moore, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

Morel, S.

E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).

Moreno, I.

Mu, Q.

Murphy, D.

D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

Mutoh, K.

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

Nakayama, H.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

Naughton, T. J.

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

O’Brien, D.

D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.

Onural, L.

F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.

Osten, W.

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009).
[CrossRef]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008).
[CrossRef]

S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
[CrossRef]

W. Osten, “Holography in new shoes: a digital-analogue interface,” in Proceedings of IEEE, LEOS Annual Meeting (IEEE, 2006), pp. 72–73.

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
[CrossRef]

Padgett, M.

N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Padgett, M. J.

Pahlke, M.

M. Pahlke, “Auslegung hocheffizienter, computergenerierter Beugungsstrukturen zur Strahlformung,” Ph. D. thesis (University of Stuttgart, 2000), ISBN 3-923560-39-7.

Palima, D.

Persson, M.

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

Peter, T.

T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993).
[CrossRef]

Pezzaniti, J. L.

Pitzek, M.

Pleguezuelos, E.

Polin, M.

Pudewills, F.

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

Ramachandran, H.

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

Reicherter, M.

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[CrossRef]

Rembe, C.

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

Ritsch-Marte, M.

Rockstuhl, C.

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).

Roichman, Y.

Rosen, J.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

Sabatier, J. M.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Salt, M.

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).

Samuel, J.

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

Sato, Y.

Saxton, W.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Schaal, F.

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

Scheuer, T.

G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990).
[CrossRef]

Schmid, M.

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

Schmitz, C. H. J.

Schmitzer, H.

H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
[CrossRef]

Schönleber, M.

T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
[CrossRef]

Schwab, C.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Schwab, X.

Schwaighofer, A.

Schwider, J.

Seifert, L.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

Seldowitz, M.

Seo, Y.-H.

Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.

Sheridan, J. T.

Sherif, S. S.

Shimobaba, T.

Shiraki, A.

Shoham, S.

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Siegmund, G.

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

Simpson, N. B.

N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Sinclair, G.

Singer, W.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Smith, D.

E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).

Smith, R.

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996).
[CrossRef]

Sonehara, T.

Spatz, J. P.

Steiger, R.

Stoeckli, S. J.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Sugie, T.

Sumi, S.

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

Suresh, K. A.

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

Suzuki, S.

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

Sweeney, D.

Sweeney, D. W.

Szecówka, P. M.

Tajahuerce, E.

Takenouchi, M.

Tan, K. L.

Tanabe, N.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

Teiwes, S.

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

Thalhammer, G.

Tiziani, H.

Tiziani, H. J.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[CrossRef]

T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
[CrossRef]

Toal, V.

Totzeck, M.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).

Tuantranont, A.

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

Upatnieks, J.

Vecchi, M.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

von Kopylow, C.

Wagemann, E. U.

Wagemann, E.-U.

T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).

Wallace, K.

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

Wang, Y.

Warber, M.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

Warren, W. L.

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960(2000).
[CrossRef]

Whelan, M. P.

Whyte, G.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[CrossRef]

Wilkinson, T.

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.

Wu, M.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

Wu, S.

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

Wulff, K. D.

Wyrowski, F.

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993).
[CrossRef]

R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).
[CrossRef]

F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989).
[CrossRef]

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
[CrossRef]

Xia, J.

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).

Xiang, N.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

Xie, J.

Xuan, L.

Yao, E.

Yaras, F.

F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Yin, H.

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).

Yoshimura, K.

Yu, F.

F. Yu, Optical Information Processing: Optical Signal Processing—Fourier Optics (Wiley, 1983).

Yuan, X.-C.

Yzuel, M.

Yzuel, M. J.

Zhang, D. W.

Zhang, F.

Zhang, H.

Zhang, J.

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

Zheng, W.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).

Zhu, X.

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

Zhuang, J.-Y.

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

Appl. Opt.

C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Suppression of undesired diffraction orders of binary phase holograms,” Appl. Opt. 47, 3994–3998 (2008).
[CrossRef]

B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
[CrossRef]

A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267–4274 (2008).
[CrossRef]

I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278–6284 (2004).
[CrossRef]

D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45, 6689–6693 (2006).
[CrossRef]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009).
[CrossRef]

M. Seldowitz, J. Allebach, and D. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef]

T. Dresel, M. Beyerlein, and J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996).
[CrossRef]

F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989).
[CrossRef]

D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617–4624 (2006).
[CrossRef]

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006).
[CrossRef]

F. Belloni and S. Monneret, “Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping,” Appl. Opt. 46, 4587–4593 (2007).
[CrossRef]

J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34, 3165–3171 (1995).
[CrossRef]

J. P. Allebach, N. C. Gallagher, and B. Liu, “Aliasing error in digital holography,” Appl. Opt. 15, 2183–2188 (1976).
[CrossRef]

T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
[CrossRef]

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009).
[CrossRef]

S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004).
[CrossRef]

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282(2001).
[CrossRef]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

Comput. Phys. Commun.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[CrossRef]

Comput. Sci. Eng.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).

J. Appl. Phys.

X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003).
[CrossRef]

J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996).
[CrossRef]

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[CrossRef]

J. Comput. Phys.

G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990).
[CrossRef]

J. Display Technol.

J. Hologr. Speckle

T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).

J. Mod. Opt.

P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997).
[CrossRef]

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992).
[CrossRef]

T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993).
[CrossRef]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).

J. Opt. A: Pure Appl. Opt.

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J.Opt. A: Pure Appl. Opt.

T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).

Math. Comput. Model.

L. Ingber, “Very fast simulated re-annealing,” Math. Comput. Model. 12, 967–973 (1989).
[CrossRef]

Microelectron. Eng.

D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995).
[CrossRef]

Mol. Cryst. Liq. Cryst.

A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005).
[CrossRef]

A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

New J. Phys.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005).
[CrossRef]

Opt. Commun.

T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997).
[CrossRef]

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996).
[CrossRef]

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002).
[CrossRef]

Opt. Eng.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).

J. Fienup, “Iterative method applied to image reconstruction and to computer–generated holograms,” Opt. Eng. 19, 297–305 (1980).

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).

Opt. Express

V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso, “Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states,” Opt. Express 14, 5607–5616 (2006).
[CrossRef]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479–4486 (2008).
[CrossRef]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
[CrossRef]

S.-H. Lee and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005).
[CrossRef]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. optimization of the modulation diffraction efficiency,” Opt. Express 13, 2111–2119(2005).
[CrossRef]

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008).
[CrossRef]

D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009).
[CrossRef]

G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665–1670 (2004).
[CrossRef]

C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008).
[CrossRef]

T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13, 1923–1932 (2005).
[CrossRef]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[CrossRef]

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
[CrossRef]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14, 2101–2107 (2006).
[CrossRef]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005).
[CrossRef]

D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16, 5338–5349 (2008).
[CrossRef]

K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16, 15942–15948 (2008).
[CrossRef]

M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
[CrossRef]

Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, “Investigation of optical testing with a phase-only liquid crystal spatial light modulator,” Opt. Express 13, 1059–1065 (2005).
[CrossRef]

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330–1339 (2009).
[CrossRef]

Opt. Lett.

Opt. Rev.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Optik (Jena)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Phys. Rev. Lett.

H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993).
[CrossRef]

Proc. SPIE

J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).

S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).

T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).

Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).

C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).

T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

Pure Appl. Opt.

H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960(2000).
[CrossRef]

Science

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

The Laryngoscope

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001).
[CrossRef]

Other

E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).

F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).

F. Yu, Optical Information Processing: Optical Signal Processing—Fourier Optics (Wiley, 1983).

D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.

D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

M. Pahlke, “Auslegung hocheffizienter, computergenerierter Beugungsstrukturen zur Strahlformung,” Ph. D. thesis (University of Stuttgart, 2000), ISBN 3-923560-39-7.

Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.

F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.

M. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in Proceedings of IEEE, Reliability Physics Symposium (IEEE, 1998) pp. 9–16.

J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.

J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.

E. Lueder, Liquid Crystal Displays (Wiley, 2001).

W. Osten, “Holography in new shoes: a digital-analogue interface,” in Proceedings of IEEE, LEOS Annual Meeting (IEEE, 2006), pp. 72–73.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.

J. Grimmett, “Thermal analysis of a light reflecting digital micromirror device,” in Proceedings of IEEE, International Systems Packaging Symposium (IEEE, 1997) pp. 242–247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of (a) recording and (b) reconstruction of digital holograms.

Fig. 2
Fig. 2

Schematic setup of dynamic holography in microscopy. In the case of a Fourier geometry, the hologram (respectively SLM) is positioned in the Fourier plane of the object plane.

Fig. 3
Fig. 3

Variation of diffraction efficiency with sine of diffraction angle (proportional to spatial frequency f x for a system obeying the sine condition) for λ = 1 μm and a pixel pitch of 10 μm . 0.05 denotes the Nyquist frequency (2 pixels per period). The different curves correspond to different maximum phase shifts of the simulated modulator.

Fig. 4
Fig. 4

Detail region of a simulated hologram reconstruction (size: 1024 × 1024 pixels) with and without replication.

Fig. 5
Fig. 5

Principle of twin traps.

Fig. 6
Fig. 6

Dynamic holgraphic ablation with pulses in Fe 2 O 3 using a ruby pulse laser (5 pulses at λ = 694 nm , 1 J / pulse , 40 ns pulse duration), measured using a confocal microscope [106]. With kind permission of IOP Publishing Ltd.

Fig. 7
Fig. 7

Section of a phase-shifting USAF-target imaged with different phase contrast methods. The filters for phase contrast imaging were displayed by the SLM. Zernike phase contrast includes the height information, whereas DIC emphasizes the phase gradients. W-DIC with Zernike is a combination of Zernike and DIC, and therefore comprises both kinds of information. Spiral phase contrast enhances the edges.

Fig. 8
Fig. 8

Setup of a dynamic multipoint or scanning vibrometer. PBC—polarizing beam splitter, BS—beam splitter, BC—Bragg cell, QWP—quarter wave plate.

Fig. 9
Fig. 9

Holgraphic versus conventional image-based projection.

Fig. 10
Fig. 10

Experimental results for imaging a circle (diameter 50 μm chrome on glass) with defocus. The small dirt particles visible to the left or right of the hole are located in different focal planes. Obviously the correction therefore is not perfect but quite satisfactory [126].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = | o + r | 2 = | o | 2 + | r | 2 + o · r * + r · o * .
r · H = r · | o | 2 + r · | r | 2 + o · | r | 2 + r · r · o * .
h ( x , y ) = H ( x , y ) exp [ i 2 π λ f ( x x + y y ) ] d x d y .
ϕ ( G 1 , G 0 ) ϕ ( G 2 , G 0 ) ϕ ( G 1 , G 2 ) .
η = 1 I 0 x , y A I ( x , y )
E = f x , f y A ( | g ( f x , f y ) | γ | h ( f x , f y ) | ) 2 ,
γ = f x , f y B | g ( f x , f y ) | | h ( f x , f y ) | f x , f y B | h ( f x , f y ) | 2 ,

Metrics