Abstract

We report the modal analysis of optical fiber single-mode–multimode–single-mode intrinsic Fabry–Perot interferometer sensors. The multimode nature of the Fabry–Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
    [CrossRef]
  2. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80(1993).
    [CrossRef] [PubMed]
  3. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  4. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
    [CrossRef]
  5. Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995).
    [CrossRef]
  6. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
    [CrossRef]
  7. J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
    [CrossRef]
  8. A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996).
    [CrossRef]
  9. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
    [CrossRef]
  10. T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
    [CrossRef]
  11. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
    [CrossRef] [PubMed]
  12. Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
    [CrossRef]
  13. V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
    [CrossRef]
  14. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
    [CrossRef]
  15. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44, 5206–5214(2005).
    [CrossRef] [PubMed]
  16. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004).
    [CrossRef] [PubMed]
  17. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems,” Opt. Lett. 31, 1202–1204(2006).
    [CrossRef] [PubMed]
  18. M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers,” Appl. Opt. 43, 4659–4666 (2004).
    [CrossRef] [PubMed]
  19. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
    [CrossRef]
  20. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
    [CrossRef]
  21. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
    [CrossRef]
  22. F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
    [CrossRef]

2010 (1)

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

2009 (1)

2007 (1)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

2006 (3)

2005 (2)

F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44, 5206–5214(2005).
[CrossRef] [PubMed]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

2004 (2)

2003 (2)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

2001 (1)

1999 (1)

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

1997 (1)

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

1996 (2)

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996).
[CrossRef]

1995 (2)

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

1993 (1)

1991 (2)

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Achenbach, J. D.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Antony, C. S.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Belleville, C.

Bhatia, V.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Chen, X.

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef] [PubMed]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Claus, R. O.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

Cooper, K.

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

Dorighi, J. F.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Duan, Y.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Duplain, G.

Furstenau, N.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Goetze, W.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Gunther, M. F.

Han, M.

Horack, H.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Huang, Z.

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef] [PubMed]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Jin, X. D.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Kersey, A. D.

A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996).
[CrossRef]

Kim, Y.

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

Krishnaswamy, S.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Kumar, A.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
[CrossRef]

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Kumar, Y. B. P.

Lee, C. E.

C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Marin, E.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
[CrossRef]

Marrone, M. J.

A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996).
[CrossRef]

May, R. G.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Meunier, J.-P.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
[CrossRef]

Murphy, K. A.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

Neikirk, D. P.

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

Park, M. K.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Peng, W.

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Pickrell, G. R.

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Prasad, B. D.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Qi, B.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Rossmanith, T.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Schmidt, M.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Schmidt, W.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Sen, M. B.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Sharma, P.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef] [PubMed]

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44, 5206–5214(2005).
[CrossRef] [PubMed]

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004).
[CrossRef] [PubMed]

Sirkis, J. S.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

Taylor, H. F.

C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Tripathi, S. M.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
[CrossRef]

Varshney, R. K.

Vengsarkar, A. M.

Venkat, V.

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

Wang, A.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef] [PubMed]

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems,” Opt. Lett. 31, 1202–1204(2006).
[CrossRef] [PubMed]

F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44, 5206–5214(2005).
[CrossRef] [PubMed]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004).
[CrossRef] [PubMed]

M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers,” Appl. Opt. 43, 4659–4666 (2004).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Wang, J.

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef] [PubMed]

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Xiao, H.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Xu, J.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Zhang, P.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Zhang, Y.

Zhao, W.

Zhu, Y.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (2)

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007).
[CrossRef]

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (2)

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999).
[CrossRef]

F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of an SMS-IFPI sensor.

Fig. 2
Fig. 2

Additional phase term for a two-mode cavity at different excitation ratios.

Fig. 3
Fig. 3

Relationship between the total field vector and the five individual mode vectors.

Fig. 4
Fig. 4

Zoom-in view of the rotating vectors: Nine groups of vectors are plotted with equal angular spacing such that υ 1 rotates exactly 2 π . Dark lines, first group of vectors (beginning position); gray lines, last group of vectors (end position: υ 1 coincides with υ 1 in the first group; υ 2 is a little behind υ 2 in the first group; the effective vector Σ is ahead of Σ in the first group). Inset: global view of the vector rotation. Upper-left arrow, position of the first and last groups of vectors; other arrows illustrate the rotational direction of the vectors.

Fig. 5
Fig. 5

Relative phase shift to LP 01 mode as k increases. Plotted are phase shifts of LP 02 mode, the effective vector Σ, and a virtual mode with n eff = n estimate .

Fig. 6
Fig. 6

Spectral phase shift induced by OPD estimation error.

Fig. 7
Fig. 7

Simulated linear fitting error as a function of wavenumber.

Fig. 8
Fig. 8

Computer-simulated relative phase change as cavity length increases.

Fig. 9
Fig. 9

Estimated n eff as the cavity length increases while all the refractive indices stay unchanged. Two horizontal lines mark the refractive indices of the MMF core and cladding.

Fig. 10
Fig. 10

Graphic explanation of the additional phase term.

Fig. 11
Fig. 11

Phase difference as a function of cavity length.

Fig. 12
Fig. 12

Phase difference as a function of temperature, measured by direct comparison of the predicted spectrum and the real spectrum. Inset: measured by using Eqs. (25, 26).

Fig. 13
Fig. 13

Additional phase term as a function of OPD.

Fig. 14
Fig. 14

Linear fitting error as a function of wavenumber (experimental).

Fig. 15
Fig. 15

Measured temperature change as a function of OPD.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I cos ( k OPD + π + φ ) .
ϕ s = r ϕ 0 ( 1 + k = 1 N η k 2 exp [ j ( 2 π λ OPD k + π ) ] ) ,
I = R 1 ϕ s ϕ s * d x d y = r 2 | 1 + Σ | 2 ,
I = 1 + η 1 4 + η 2 4 + 2 η 1 2 cos ( OPD 1 k 0 ) + 2 η 2 2 cos ( ( OPD 1 Δ OPD ) k 0 ) + 2 η 1 2 η 2 2 cos ( Δ OPD k 0 ) .
I = r 2 { 1 + Γ + 2 Γ sin [ OPD 1 k 0 + φ ( Δ OPD , k 0 ) + π ] } ,
Γ = η 1 4 + η 2 4 + 2 η 1 2 η 2 2 cos ( Δ OPD k 0 ) φ ( Δ OPD , k 0 ) = { arctan ( η 1 2 + η 2 2 cos ( Δ OPD k 0 ) η 2 2 sin ( Δ OPD k 0 ) ) , sin ( Δ OPD k 0 ) 0 π arctan ( η 1 2 + η 2 2 cos ( Δ OPD k 0 ) | η 2 2 sin ( Δ OPD k 0 ) | ) , sin ( Δ OPD k 0 ) < 0 .
I | 1 + Σ | 2 = 1 + | Σ | 2 + 2 | Σ | cos ( ψ ) , where     ψ = Σ .
Σ = k = 1 N η k 2 exp [ j ( 2 π λ OPD k ) ] ,
Δ OPD OPD = ( 1 p e ) ε ,
Δ OPD OPD = ( α T + σ T ) Δ T ,
φ tot = k OPD + φ 0 ,
k m OPD + φ 0 = 2 π N , φ 0 = φ 0 2 π m 0 , N = 0 , 1 , 2 , .
k m ( 1 ) OPD ( 1 ) + φ 0 = 2 π N .
δ OPD = δ φ 2 π λ m .
k m ( 1 ) OPD ( 1 ) = k m OPD .
OPD ( 2 ) = k m ( 1 ) k m OPD ( 1 ) .
J l ( u ) u J l 1 ( u ) + K l ( w ) w K l 1 ( w ) = 0 ,
ϕ k = { A J 0 ( u k r / a ) / J 0 ( u k ) , r < a A K 0 ( w k r / a ) / K 0 ( w k ) , r > a ,
φ = Σ = { k = 1 N η k 2 exp [ j ( 2 k L n k ) ] } .
d φ d k = d φ d ( k L ) d ( k L ) d k 2 n ¯ est L = OPD ( 1 ) ,
d φ d L = d φ d ( k L ) d ( k L ) d L 2 n ¯ est k .
d φ d ( 2 k n ¯ est L ) = 2 k ( L d n ¯ est + n ¯ est d L ) 2 k n ¯ est d L .
φ 1 0 L 2 k n ¯ est d l ,
φ 2 = 2 k n ¯ est L .
d φ d T = d φ d OPD ( 1 ) d OPD ( 1 ) d T k ( α T + σ T ) OPD ( 1 ) .
Δ φ 1 | T 1 T 2 k ( α T + σ T ) T 1 T 2 OPD ( 1 ) ( T ) d T .
Δ φ 2 | T 1 T 2 = k ( OPD ( 1 ) ( T 2 ) OPD ( 1 ) ( T 1 ) ) .

Metrics