Abstract

A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262  bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325(2009).
    [CrossRef] [PubMed]
  2. T. F. Krauss, “Why do we need slow light?,” Nat. Photon. 2, 448–450 (2008).
    [CrossRef]
  3. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2001).
  5. A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
    [CrossRef]
  6. M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
    [CrossRef]
  7. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  8. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006).
    [CrossRef] [PubMed]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef] [PubMed]
  10. M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008).
    [CrossRef]
  11. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef] [PubMed]
  12. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef] [PubMed]
  13. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
    [CrossRef]
  14. L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.
  15. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003).
    [CrossRef] [PubMed]
  16. A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
    [CrossRef]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  19. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  20. G. P. Agrawal, Fiber-Optic Communication Systems(Wiley, 2002).
    [CrossRef]

2009

2008

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?,” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008).
[CrossRef]

2006

L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006).
[CrossRef] [PubMed]

2005

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

2004

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003

2002

G. P. Agrawal, Fiber-Optic Communication Systems(Wiley, 2002).
[CrossRef]

2001

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2001).

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems(Wiley, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2001).

Albin, S.

Baba, T.

Benisty, H.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[CrossRef]

Bermel, P.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Borel, P. I.

Burr, G. W.

Chang-Hasnain, C. J.

Chipouras, A.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

Chun, J.

M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

David, A.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[CrossRef]

De La Rue, R. M.

Ebnali-Heidari, M.

Eggleton, B. J.

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fage-Pedersen, J.

Farjadpour, A.

Frandsen, L. H.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gomez-Iglesias, A.

Grillet, C.

Guo, S.

Hamachi, Y.

Huang, Z. R.

L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.

Ibanescu, M.

Jiang, C.

Jiguang, L.

L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.

Jing, M.

M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kamalakis, T.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?,” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ku, P.-C.

Kubo, S.

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Li, J.

Ma, J.

Monat, C.

O’Faolain, L.

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Rawal, S.

Rodriguez, A.

Roundy, D.

Sinha, R.

Sphicopoulos, T.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

Theocharidis, A.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

Tucker, R. S.

Van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Wang, F.

Weisbuch, C.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[CrossRef]

White, T. P.

Appl. Phys. Lett.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

IEEE J. Quantum Electron.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

IEEE Photonics Technol. Lett.

M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008).
[CrossRef]

J. Lightwave Technol.

Nat. Photon.

T. F. Krauss, “Why do we need slow light?,” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[CrossRef]

Phys. Rev. Lett.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Fiber-Optic Communication Systems(Wiley, 2002).
[CrossRef]

L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the line-defect PCW with elliptical airholes.

Fig. 2
Fig. 2

Typical band diagram of a line-defect PCW with elliptical airholes. The odd and even modes are in the PBG of the crystal.

Fig. 3
Fig. 3

Movement of the even PBG mode when the semi-major axis A of the bulk elliptical airhole changes from 0.25 a to 0.40 a , where the semi-minor axis B = 0.30 a is assumed.

Fig. 4
Fig. 4

Movement of the even PBG mode when the semi-minor axis B of the bulk elliptical airhole changes from 0.26 a to 0.41 a , where the semi-major axis A = 0.30 a is assumed.

Fig. 5
Fig. 5

Guided modes and group indices of the line-defect PCW with elliptical and circular airholes of the same filling ratio.

Fig. 6
Fig. 6

Modal field distribution in line-defect PCW with (a) elliptical ( A = 0.38 a , B = 0.27 a ) and (b) circular ( r = 0.32 a ) airholes of the same filling ratio, for a wavelength of 1550 nm .

Fig. 7
Fig. 7

Group index as a function of normalized frequency with different A 1 , B 1 , and d. The bandwidths with constant group delay are single-mode ranges. The right inset depicts the GVD of the even PBG mode in structure II. The gray areas denote the negligible-dispersion bandwidth.

Fig. 8
Fig. 8

Maximum data rate and maximum buffer capacity as a function of delay length in structure II.

Fig. 9
Fig. 9

Maximum buffer capacity and maximum delay time as a function of delay length in structure II and the APCW structure.

Tables (1)

Tables Icon

Table 1 Maximum Buffer Capacity, Delay Time, and Maximum Data Rate in Structure II and the APCW Structure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v ˜ g = ω 0 Δ ω / 2 ω 0 + Δ ω / 2 f ( ω ) v g ( ω ) d ω / Δ ω = ω 0 Δ ω / 2 ω 0 + Δ ω / 2 ( 1 ( 1 / Δ ω ) 2 ( ω ω 0 ) 2 / 2 ) v g ( ω ) d ω / Δ ω ,
β ˜ 2 = ω 0 Δ ω / 2 ω 0 + Δ ω / 2 f ( ω ) β 2 ( ω ) d ω / Δ ω = ω 0 Δ ω / 2 ω 0 + Δ ω / 2 ( 1 ( 1 / Δ ω ) 2 ( ω ω 0 ) 2 / 2 ) β 2 ( ω ) d ω / Δ ω .
R b 1 / 4 ( π L | β ˜ 2 | ) 1 / 2 ,
C = T s B L v ˜ g · ( 1 4 π L | β ˜ 2 | ) 1 / 2 = ( L 4 π ) 1 / 2 1 v ˜ g | β ˜ 2 | 1 / 2 .

Metrics