Abstract

We have experimentally investigated the generation and propagation of square dissipative solitons emitted from an erbium-doped fiber laser with large normal cavity dispersion. The square pulse exhibits an approximately Gaussian spectral profile and large frequency chirp on its edges. When the square pulse propagates through a segment of single-mode fiber (SMF), it can be shaped to a Gaussian pulse and the corresponding spectrum will have a redshift with a prolonged wing on the longer wavelength. Our experiments show that the pulse evolution in the SMF is determined by the combined effects of the fiber dispersion, intrapulse Raman scattering, and the pulse initial chirps.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Putnam, M. L. Dennis, I. N. Duling III, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
    [CrossRef]
  2. S. Cialdi, I. Boscolo, and A. Flacco, “Features of a phase-only shaper set for a long rectangular pulse,” J. Opt. Soc. Am. B 21, 1693–1698 (2004).
    [CrossRef]
  3. D. Anderson and M. Lisak, “Propagation characteristics of frequency-chirped super-Gaussian optical pulses,” Opt. Lett. 11, 569–571 (1986).
    [CrossRef] [PubMed]
  4. K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
    [CrossRef]
  5. C. Lin and A. Tomita, “Chirped picosecond injection laser pulse transmission in single mode-fibers in the minimum chromatic dispersion region,” Electron. Lett. 19, 837–838(1983).
    [CrossRef]
  6. L. Wang, X. Liu, Y. Gong, D. Mao, and X. Li, “Transitional and steady mode-locking evolution of dissipative solitons,” Appl. Opt. 49, 2665–2669 (2010).
    [CrossRef]
  7. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
    [CrossRef] [PubMed]
  8. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32, 1581–1583 (2007).
    [CrossRef] [PubMed]
  9. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  10. N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003), pp. 105–126.
  11. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
    [CrossRef]
  12. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005), p. 448.
    [CrossRef]
  13. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008).
    [CrossRef] [PubMed]
  14. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
    [CrossRef]
  15. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008), p. 520.
  16. G. P. Agrawal and M. J. Potasek, “Effect of frequency chirping on the performance of optical communication systems,” Opt. Lett. 11, 318–320 (1986).
    [CrossRef] [PubMed]
  17. X. M. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
    [CrossRef]
  18. X. M. Liu and D. Mao, “Compact all-fiber high-energy fiber laser with sub-300 fs duration,” Opt. Express 18, 8847–8852(2010).
    [CrossRef] [PubMed]
  19. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17, 22401–22416 (2009).
    [CrossRef]
  20. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion,” Appl. Opt. 46, 4768–4773(2007).
    [CrossRef] [PubMed]
  21. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]

2010

2009

2008

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008).
[CrossRef] [PubMed]

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008), p. 520.

2007

2005

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005), p. 448.
[CrossRef]

2004

2003

N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003), pp. 105–126.

1998

1997

1986

1983

C. Lin and A. Tomita, “Chirped picosecond injection laser pulse transmission in single mode-fibers in the minimum chromatic dispersion region,” Electron. Lett. 19, 837–838(1983).
[CrossRef]

1982

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

Agrawal, G. P.

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008), p. 520.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005), p. 448.
[CrossRef]

N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003), pp. 105–126.

Anderson, D.

Ankiewicz, A.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008), p. 520.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005), p. 448.
[CrossRef]

N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003), pp. 105–126.

Askins, C. G.

Barad, Y.

Boscolo, I.

Cabasse, A.

Cheng, T. H.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Cialdi, S.

Dennis, M. L.

Duling, I. N.

Flacco, A.

Friebele, E. J.

Gong, Y.

Gordon, J. P.

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

Hideur, A.

Horowitz, M.

Iwashita, K.

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

Kieu, K.

Li, X.

Limpert, J.

Lin, C.

C. Lin and A. Tomita, “Chirped picosecond injection laser pulse transmission in single mode-fibers in the minimum chromatic dispersion region,” Electron. Lett. 19, 837–838(1983).
[CrossRef]

Lisak, M.

Liu, X.

Liu, X. M.

X. M. Liu and D. Mao, “Compact all-fiber high-energy fiber laser with sub-300 fs duration,” Opt. Express 18, 8847–8852(2010).
[CrossRef] [PubMed]

X. M. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
[CrossRef]

Lu, C.

Mao, D.

Martel, G.

Nakagawa, K.

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

Nakano, Y.

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

Ortaç, B.

Potasek, M. J.

Putnam, M. A.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Silberberg, Y.

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

Suzuki, Y.

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

Tam, H. Y.

Tang, D. Y.

Tomita, A.

C. Lin and A. Tomita, “Chirped picosecond injection laser pulse transmission in single mode-fibers in the minimum chromatic dispersion region,” Electron. Lett. 19, 837–838(1983).
[CrossRef]

Wang, L.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008).
[CrossRef] [PubMed]

Wu, X.

Zhang, H.

Zhao, L. M.

Appl. Opt.

Electron. Lett.

K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18, 873–874 (1982).
[CrossRef]

C. Lin and A. Tomita, “Chirped picosecond injection laser pulse transmission in single mode-fibers in the minimum chromatic dispersion region,” Electron. Lett. 19, 837–838(1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Lett. A

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

Phys. Rev. A

X. M. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Other

N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003), pp. 105–126.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005), p. 448.
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008), p. 520.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: unidirectional ring cavity for square DSs and SMF for pulse propagation.

Fig. 2
Fig. 2

(a) Oscilloscope traces, (b) autocorrelation trace, (c) RF spectra, and (d) optical spectrum of the square pulse observed directly from the ring cavity.

Fig. 3
Fig. 3

(a) Autocorrelation traces and (b) optical spectra with different propagation distances.

Fig. 4
Fig. 4

Pulse durations after propagation through different distances. From top to bottom, the initial widths of square pulses are 450, 355, 300, 225, and 150 ps .

Fig. 5
Fig. 5

Autocorrelation traces of a Gaussian DS with different propagation distances. The inset is the spectrum of an incident Gaussian pulse.

Metrics