Abstract

We have adapted our in-cylinder Fourier-transform spectroscopy technique to measure absorption spectra in a reciprocating engine. Previously, we had used the technique for emission spectroscopy; the upgrade to absorption spectroscopy mode is important because it allows for more quantitative anal ysis of gas properties than is possible with emission spectroscopy. Here, we discuss fuel, H2O, and CO2 spectra measured in an engine using a spark-plug-based probe for optical access and use the water portion of the spectra to determine in-cylinder gas temperature. The temperature results show that heat transfer effects can significantly bias thermometry when fiber-coupled engine probes are used.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.
  2. C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007).
    [CrossRef]
  3. R. J. Bartula, J. B. Ghandhi, S. T. Sanders, E. J. Mierkiewicz, F. L. Roesler, and J. M. Harlander, “OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy,” Appl. Opt. 46, 8635–8640 (2007).
    [CrossRef] [PubMed]
  4. K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).
  5. K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
    [CrossRef]
  6. D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).
  7. S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).
  8. M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618.
    [CrossRef]
  9. N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
    [CrossRef]
  10. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
    [CrossRef]
  11. A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.
  12. G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
    [CrossRef]
  13. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 1996), p. 33.
  14. R. A. Palmer, C. J. Manning, J. A. Rzepiela, J. M. Widder, and J. L. Chao, “Time-resolved spectroscopy using step-scan Fourier transform interferometry,” Appl. Spectrosc. 43, 193–195 (1989).
    [CrossRef]
  15. R. E. Murphy, F. H. Cook, and H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am. 65, 600–604 (1975).
    [CrossRef]
  16. R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.
  17. A. W. Caswell, “Water vapor absorption thermometry for practical combustion applications,” Ph.D. dissertation (University of Wisconsin–Madison, 2009).
  18. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
    [CrossRef] [PubMed]
  19. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
    [CrossRef]
  20. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
    [CrossRef]
  21. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
    [CrossRef]
  22. A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” Ph.D.dissertation (Stanford University, 2008).
  23. L. A. Kranendonk, “Wavelength-agile absorption spectroscopy for measuring temperature and H2O mole fraction in harsh environments,” Ph.D. dissertation (University of Wisconsin–Madison, 2007).
  24. J. R. Brossman, “Light-load burn rate analysis in an air-cooled utility engine,” M.S. thesis (University of Wisconsin–Madison, 2009).

2010 (1)

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

2009 (3)

K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).

A. W. Caswell, “Water vapor absorption thermometry for practical combustion applications,” Ph.D. dissertation (University of Wisconsin–Madison, 2009).

J. R. Brossman, “Light-load burn rate analysis in an air-cooled utility engine,” M.S. thesis (University of Wisconsin–Madison, 2009).

2008 (3)

A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” Ph.D.dissertation (Stanford University, 2008).

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.

2007 (7)

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

L. A. Kranendonk, “Wavelength-agile absorption spectroscopy for measuring temperature and H2O mole fraction in harsh environments,” Ph.D. dissertation (University of Wisconsin–Madison, 2007).

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

R. J. Bartula, J. B. Ghandhi, S. T. Sanders, E. J. Mierkiewicz, F. L. Roesler, and J. M. Harlander, “OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy,” Appl. Opt. 46, 8635–8640 (2007).
[CrossRef] [PubMed]

2006 (1)

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

2005 (1)

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

2003 (2)

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

1996 (3)

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 1996), p. 33.

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618.
[CrossRef]

1989 (1)

1975 (1)

1971 (1)

R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.

Allen, M.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

An, X.

Barber, R. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Bartula, R. J.

K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).

R. J. Bartula, J. B. Ghandhi, S. T. Sanders, E. J. Mierkiewicz, F. L. Roesler, and J. M. Harlander, “OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy,” Appl. Opt. 46, 8635–8640 (2007).
[CrossRef] [PubMed]

Beushausen, V.

A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.

Brossman, J. R.

J. R. Brossman, “Light-load burn rate analysis in an air-cooled utility engine,” M.S. thesis (University of Wisconsin–Madison, 2009).

Caswell, A. W.

A. W. Caswell, “Water vapor absorption thermometry for practical combustion applications,” Ph.D. dissertation (University of Wisconsin–Madison, 2009).

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

Chao, J. L.

Cook, F. H.

Dibble, R. W.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Fujimoto, J. G.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

Ghandhi, J. B.

Grosch, A.

A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.

Hagen, C. L.

C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007).
[CrossRef]

Hall, M. J.

M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618.
[CrossRef]

Hanson, R.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Hanson, R. M.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

Hardiman, L.

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

Harlander, J. M.

Harris, G. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Hayashi, K.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

Herold, R. E.

Huber, R.

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

Iwai, K.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

Jeffries, J.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Jiang, E. Y.

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

Kagawa, R.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

Kawahara, N.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Kim, T.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

Kindle, H.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Kitching, J. S.

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

Klingbeil, A. E.

A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” Ph.D.dissertation (Stanford University, 2008).

Koenig, M.

M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618.
[CrossRef]

Kokjohn, S. L.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

Kranendonk, L. A.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

L. A. Kranendonk, “Wavelength-agile absorption spectroscopy for measuring temperature and H2O mole fraction in harsh environments,” Ph.D. dissertation (University of Wisconsin–Madison, 2007).

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

Li, H.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Liu, J.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Liu, X.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Lowry, S. R.

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

Manning, C. J.

Mierkiewicz, E. J.

Mulhall, P.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Murphy, R. E.

R. E. Murphy, F. H. Cook, and H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am. 65, 600–604 (1975).
[CrossRef]

R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.

Myers, A. N.

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

Nattrass, S. R.

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

Nishiyama, A.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Okura, Y.

Palmer, R. A.

Rein, K. D.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

Reitz, R. D.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

Rieker, G.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Roesler, F. L.

Rzepiela, J. A.

Sakai, H.

R. E. Murphy, F. H. Cook, and H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am. 65, 600–604 (1975).
[CrossRef]

R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.

Sanders, S. T.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

R. J. Bartula, J. B. Ghandhi, S. T. Sanders, E. J. Mierkiewicz, F. L. Roesler, and J. M. Harlander, “OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy,” Appl. Opt. 46, 8635–8640 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef] [PubMed]

C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007).
[CrossRef]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

Shigenaga, M.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Skippon, S. M.

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

Smith, B. C.

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 1996), p. 33.

Splitter, D. A.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

Tabata, M.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

Tennyson, J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Thiele, O.

A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.

Tolchenov, R. N.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Tomita, E.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Urata, Y.

Walewski, J. W.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

Wehe, S.

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

Widder, J. M.

Workman, J. J.

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Near Infrared Spectrosc. (1)

C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (2)

K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).
[CrossRef]

Opt. Express (1)

Proc. Combust. Inst. (4)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007).
[CrossRef]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005).
[CrossRef]

G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007).
[CrossRef]

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007).
[CrossRef]

Other (12)

K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).

A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.

D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).

S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).

M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618.
[CrossRef]

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 1996), p. 33.

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.

R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.

A. W. Caswell, “Water vapor absorption thermometry for practical combustion applications,” Ph.D. dissertation (University of Wisconsin–Madison, 2009).

A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” Ph.D.dissertation (Stanford University, 2008).

L. A. Kranendonk, “Wavelength-agile absorption spectroscopy for measuring temperature and H2O mole fraction in harsh environments,” Ph.D. dissertation (University of Wisconsin–Madison, 2007).

J. R. Brossman, “Light-load burn rate analysis in an air-cooled utility engine,” M.S. thesis (University of Wisconsin–Madison, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental schematic. Broadband light is passed through the Michelson interferometer in the FTIR and coupled into the OSPP ( I o ). The light is reflected by a mirror on the probe, collected via another fiber optic (I) and passed to an InSb photodetector (PD1). A BK7 beam splitter (BS1) in the He–Ne beam path reflects light to a silicon photodiode (PD2) used to track mirror position. The piston position is tracked using a crank-shaft encoder.

Fig. 2
Fig. 2

Example of a partially populated interferogram, which shows the measured interference signal as a function of the mirror position, from approximately halfway through the test. This interferogram was compiled from interferometer readings at one piston position for each of many engine cycles. Each individual segment in the interferogram represents data from a different engine cycle. Once filled, the Fourier transform of this interferogram will yield the spectrum for that piston position.

Fig. 3
Fig. 3

Measured absorption spectra at seven selected piston positions. All spectra were recorded in a single engine test using the free-running FTS approach described herein. Each spectrum represents an average over approximately 52,200 different engine cycles and over a 4 CAD window. The spectral resolution is 0.67 cm 1 . The signatures are due to hydrocarbon fuel components, CO 2 , and H 2 O as labeled in the second and third panels from the top. The region from 3500 to 4200 cm 1 has been scaled by a factor of 2 for clarity.

Fig. 4
Fig. 4

Measured spectra (black curves) and their corresponding “best-fit” spectra (solid red area) from the BT2 spectral database [15].

Fig. 5
Fig. 5

In-cylinder temperature, pressure, and mole fractions of fuel and H 2 O versus piston position. Top panel: the measured temperature, ideal gas prediction, and an estimate for the temperature drop caused by heat transfer in the probe. Middle panel: measured pressure. Bottom panel: the calculated mole fractions for fuel and H 2 O .

Fig. 6
Fig. 6

Three-dimensional rendering of the OSPP tip showing the mirror housing dimensions.

Tables (1)

Tables Icon

Table 1 Geometry of the Briggs Intek Engine Used in This Test a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ν = ln ( I I o ) ,
Resolution = 1 2 Δ .
V m , fuel = k υ d υ σ υ d υ ,
X fuel = V m , fuel V m , all .

Metrics