Abstract

Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100keV, we propose using grazing- incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5100μm periods and 90mm active length. Experimental tests with x rays up to 60keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008).
    [CrossRef]
  2. C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
    [CrossRef] [PubMed]
  3. T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
    [CrossRef]
  4. J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
    [CrossRef] [PubMed]
  5. P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
    [CrossRef] [PubMed]
  6. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
    [CrossRef] [PubMed]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
    [CrossRef] [PubMed]
  8. Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
    [CrossRef] [PubMed]
  9. S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
    [CrossRef]
  10. M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
    [CrossRef] [PubMed]
  11. J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
    [CrossRef]
  12. H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
    [CrossRef] [PubMed]
  13. M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
    [CrossRef] [PubMed]
  14. C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
    [CrossRef] [PubMed]
  15. J. F. Clauser, “Ultrahigh resolution interferometric x-ray imaging,” U.S. patent 5,812,629 (22 September 1998).
  16. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
    [CrossRef]
  17. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
    [CrossRef]
  18. T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
    [CrossRef]
  19. C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
    [CrossRef]
  20. E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
    [CrossRef]
  21. M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
    [CrossRef] [PubMed]
  22. T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
    [CrossRef] [PubMed]
  23. T. Weitkamp, “XWFP: an x-ray wavefront propagation software package for the IDL computer language,” Proc. SPIE 5536, 181–189 (2004).
    [CrossRef]
  24. M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998).
    [CrossRef]
  25. M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
    [CrossRef]
  26. S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
    [CrossRef]
  27. Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
    [CrossRef] [PubMed]
  28. http://www.customscientific.com/.
  29. http://www.dalsa.com/public/ls/datasheets/xr4s_datasheet_101708.pdf.
  30. http://www.amptek.com/.
  31. K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
    [CrossRef] [PubMed]
  32. G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
    [CrossRef]
  33. M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
    [CrossRef]
  34. M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
    [CrossRef]

2009 (8)

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
[CrossRef]

2008 (9)

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008).
[CrossRef]

2007 (4)

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
[CrossRef] [PubMed]

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

2006 (4)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

2004 (2)

T. Weitkamp, “XWFP: an x-ray wavefront propagation software package for the IDL computer language,” Proc. SPIE 5536, 181–189 (2004).
[CrossRef]

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[CrossRef] [PubMed]

1998 (1)

M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998).
[CrossRef]

1996 (1)

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Adachi, S.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Ando, M.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Aoki, S.

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Arai, Y.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Arkadievc, V.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Bech, M.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

Bednarzik, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Boerner, M.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Boni, P.

M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
[CrossRef]

Brahme, A.

S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008).
[CrossRef]

Brankov, J. G.

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

Bravin, A.

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

Bronnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

Bruder, J.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Bunk, O.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

Burgess, J. M.

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Chen, F.

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

Choi, J.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Cibikb, L.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Clauser, J. F.

J. F. Clauser, “Ultrahigh resolution interferometric x-ray imaging,” U.S. patent 5,812,629 (22 September 1998).

Coan, P.

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

Connor, D.

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

David, C.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

Dejus, R. J.

M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998).
[CrossRef]

Dewald, E. L.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Diaz, A.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Donath, T.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

Engelhaupt, D. E.

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Evans, R.

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

Feidenhans, R.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

Fernandez, M.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

Fratzscherc, D.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Gerlachb, M.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Golfiera, S.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Goncharenko, A. M.

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Groot, W.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Grunzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Grünzweig, C.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Gubarev, M. V.

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Hammel, B. A.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Haschkec, M.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Hashimoto, E.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Hattori, T.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

Hempe, E.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Hilger, A.

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Hoheisel, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Ichihara, S.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Ichikawa, H.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Ichiyanagi, K.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Ihee, H.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Izumi, N.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Jahn, J.

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Jakobs, P.-J.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Jensen, T. H.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

Jost, G.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Kardjilov, N.

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Kashyap, Yogesh S.

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Keyrilainen, J.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

Khilo, N. A.

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Kim, K. H.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Koch, J. A.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Koshihara, S.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Kottler, C.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

Kozioziemski, B. J.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

Krumreyb, M.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Lagerstrom, R.

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

Landen, O. L.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Langhoffc, N.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Lawaczecka, R.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Lee, J. H.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Lewis, R. A.

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[CrossRef] [PubMed]

Li, J.

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

Loewen, R.

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

Luedemanne, L.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Maksimenko, A.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Manke, I.

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Mayo, S.

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

Mildner, D. F. R.

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Mohr, J.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Mollenhauer, J.

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

Momose, A.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

Muehleman, C.

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

Nazmov, V.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Nozawa, S.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Ohigashi, T.

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Parham, C.

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

Pfeiffer, F.

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

Pietscha, H.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Pisano, E.

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

Popescu, S.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Rabec, J.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Ramsey, B. D.

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Reznikova, E.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Rifkin, J.

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

Rohbeck, T.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Roy, Tushar

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Ruth, R.

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

Salmonson, J. D.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

Sanchez del Rio, M.

M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998).
[CrossRef]

Sarkar, P. S.

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Sato, T.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Schneider, M.

M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
[CrossRef]

Shimao, D.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Shukla, M.

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Sinha, A.

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Stahn, J.

M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
[CrossRef]

Strobl, M.

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Sugiyama, H.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Suhonen, H.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

Suorttia, P.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

Suzuki, Y.

Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
[CrossRef] [PubMed]

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Takano, H.

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Takeda, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

Takeuchi, A.

Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
[CrossRef] [PubMed]

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Terada, Y.

Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
[CrossRef] [PubMed]

Testorf, M.

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Tomita, A.

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Wagner, A.

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

Watanabe, N.

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Wedelld, R.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Weitkamp, T.

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

T. Weitkamp, “XWFP: an x-ray wavefront propagation software package for the IDL computer language,” Proc. SPIE 5536, 181–189 (2004).
[CrossRef]

Wernick, M. N.

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

Wuste, P.

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

Yadav, P. S.

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Yashiro, W.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

Yokosuka, H.

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Yuasa, T.

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Zhong, Z.

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

Zhou, S.-A.

S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008).
[CrossRef]

Acad. Radiol. (1)

C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009).
[CrossRef] [PubMed]

Appl. Radiat. Isot. (1)

Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008).
[CrossRef] [PubMed]

Eur. J. Radiol. (2)

P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008).
[CrossRef] [PubMed]

G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008).
[CrossRef]

J. Anat. (1)

C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009).
[CrossRef]

J. Phys. Conf. Ser. (1)

S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009).
[CrossRef]

J. Synchrotron Radiat. (3)

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007).
[CrossRef] [PubMed]

M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008).
[CrossRef] [PubMed]

K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (2)

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[CrossRef]

S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005).
[CrossRef]

Microelectron. Eng. (1)

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Microsyst. Technol. (1)

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[CrossRef]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (2)

M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009).
[CrossRef]

T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007).
[CrossRef]

Opt. Commun. (1)

M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Osteoarthritis Cartilage (1)

J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[CrossRef] [PubMed]

M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009).
[CrossRef] [PubMed]

Phys. Medica (1)

S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008).
[CrossRef] [PubMed]

Proc. SPIE (3)

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[CrossRef]

T. Weitkamp, “XWFP: an x-ray wavefront propagation software package for the IDL computer language,” Proc. SPIE 5536, 181–189 (2004).
[CrossRef]

M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007).
[CrossRef] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[CrossRef] [PubMed]

Other (4)

J. F. Clauser, “Ultrahigh resolution interferometric x-ray imaging,” U.S. patent 5,812,629 (22 September 1998).

http://www.customscientific.com/.

http://www.dalsa.com/public/ls/datasheets/xr4s_datasheet_101708.pdf.

http://www.amptek.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Gold thickness needed for 95% absorption as a function of x-ray energy. Also shown is the fringe contrast for a grating interferometer having a 30 μm thick, 4 μm period Au analyzer. At energies of clinical interest, the analyzer becomes transparent to x rays, drastically reducing the interferometer contrast.

Fig. 2
Fig. 2

Layout of microperiodic-mirror-based DPC imaging concept: a), b) with point source, and c) with extended spot source. The addition of a “source mirror” enables the interferometer to work with a high-power, extended spot x-ray tube.

Fig. 3
Fig. 3

Layout of “effective period” and of “physical period” mirrors. For simplicity, only the beam-splitter mirror and its fringe pattern are shown.

Fig. 4
Fig. 4

Illustration of the different sensitivity to object movement of the effective and physical period configurations. While in the effective period setup, an object movement perpendicular to the grating lines can induce a large change in the measured intensity profile; in the physical period setup, the intensity profile is “carried” with the object along the detector.

Fig. 5
Fig. 5

XWFP computed fringe pattern at the first Talbot distance for simulated grazing-incidence structure of 4 μm effective period at 50 keV , showing that at high x-ray energy, the effects of the wave propagation along the mirror length are small.

Fig. 6
Fig. 6

Fringe contrast for “mirrors-only” and for “grating-mirror” interferometer of 4 μm period and 50 keV mean energy. Also shown are the overall interferometer transmission for a three-mirror system and the spectrum of a W tube at 100 kV filtered with a 50 μm W absorber.

Fig. 7
Fig. 7

Grazing-incidence reflectivity plots describing the principle of lithographic mirror fabrication: a) reflectivity of Au and Si at 1.15 mrad and transmission of a 50 μm W filter and b) mirror reflectivity after filtering out the low-energy photons.

Fig. 8
Fig. 8

a) Layout of Ta patterns in the prototype microperiodic mirrors. b) Visible light interferogram of one of the mirrors placed on an optical flat; the inset also shows a microscope image of the 5 μm physical pattern.

Fig. 9
Fig. 9

Optical setup for microperiodic mirror tests. The low-energy radiation is cut off by a Si or Cu filter spectrum, and the direct light is suppressed by a knife-edge absorber. A high-sensitivity and high-resolution x-ray CCD camera enables working at source detector distances up to 3 m .

Fig. 10
Fig. 10

a) Measured spectra of incident (direct) and reflected light at 60 kV source voltage and varying mirror angle. b) Spectra predicted with the XOP code, assuming a 10 Å mirror roughness.

Fig. 11
Fig. 11

Images of the nonpatterned region of a mirror (inset), showing the contrast between the glass substrate and the Ta film at varying incidence angles and with an Si filter; the right panels show the intensity profiles in the vertical direction (along the dotted-line box).

Fig. 12
Fig. 12

a) Image of the 100 μm physical period pattern at 2.5 mrad incidence angle. b) Horizontal intensity profile in the image (along the dotted-line box); also shown is the computed profile for a 100 μm period grid of 100% contrast, viewed with a detector having a Gaussian point spread function of 55 μm FWHM. The comparable intensity modulation indicates a high intrinsic contrast for the mirror-produced pattern.

Fig. 13
Fig. 13

a) Images of the 14 mm normal period pattern at decreasing incidence angle/effective period. b) Vertical intensity profile in the 6 mrad image, along the dotted-line box; also shown is the intensity profile computed as in Fig. 12, but for an 85 μm period grid.

Fig. 14
Fig. 14

a) “Antiparallel” setup used for two-mirror imaging in the physical period configuration. b) Images of individual 100 μm physical patterns from the two mirrors at 1.7 mrad incidence, before placing the second mirror in the path of the rays reflected by the first. c) Moiré patterns obtained by double reflection from the patterns at different “phase” differences between the two patterns. d) Horizontal intensity profile of the upper moiré pattern.

Fig. 15
Fig. 15

a) “Parallel” setup used for the effective period two-mirror experiments. b) Double-reflection images of the effective period patterns from the two mirrors at 2 mrad , at “phasing” of 0 and π. The double reflection from the nonpatterned region is also shown, indicating that without patterns the intensity does not change significantly.

Metrics