Abstract

Temperature and strain measurements obtained during coating of spin-cast borosilicate samples are presented here with an analysis of these results. These tests were performed for the Large Synoptic Survey Telescope (LSST) project to verify the possible use of sputtering deposition of optical coating on its large 8.4m diameter primary–tertiary mirror. Made of spin-cast borosilicate glass, the working stress of the mirror’s nonpolished surfaces is 100psi (0.69MPa), resulting in a local temperature difference limit of 5°C. To ensure representative environmental conditions, the tests were performed in the Gemini Observatory coating chamber located in Hawaii, whose design was utilized to develop the LSST coating chamber design. In particular, this coating chamber is equipped with linear magnetrons built with cooled heat shields directly facing the mirror surface. These measurements have demonstrated that it will be safe for the LSST to use a magnetron sputtering process for coating its borosilicate primary–tertiary mirror.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Krabbendam, “The Large Synoptic Survey Telescope concept design overview,” Proc. SPIE 7012, 701205 (2008).
    [CrossRef]
  2. J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
    [CrossRef]
  3. J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
    [CrossRef]
  4. M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
    [CrossRef]
  5. M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
    [CrossRef]
  6. B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
    [CrossRef]
  7. J. A. Thornton and J. E. Greene, “Sputter deposition processes,” Handbook of Deposition Technologies for Films and Coatings, 2nd ed. (Noyes Publications, 1994), pp. 249–319.
  8. W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
    [CrossRef]
  9. J. M. Hill, J. R. P. Angel, and B. Olbert, “Rules for handling large borosilicate honeycomb mirrors,” Columbus Project Technical Memo UA-92-05 (Steward Mirror Lab, 1992).
  10. J. R. Plaisted, G. McDonough, and G. Roche, “Effects of the anode configuration on substrate heating in dual magnetron sputtering,” White paper SL-WHITE3-270-01 (Advanced Energy Industries Corporation, 2001).
  11. Vishay Micro-Measurements, “Strain gage rosettes,” Technical Note TN-515 (Vishay Micro-Measurements, 2008), http://www.vishay.com/strain-gages/knowledge-base-list/technotes-list/.

2008 (1)

V. Krabbendam, “The Large Synoptic Survey Telescope concept design overview,” Proc. SPIE 7012, 701205 (2008).
[CrossRef]

2006 (2)

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

2004 (1)

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

1998 (2)

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
[CrossRef]

1997 (1)

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Ah’Hee, C.

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

Angel, J. R. P.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

J. M. Hill, J. R. P. Angel, and B. Olbert, “Rules for handling large borosilicate honeycomb mirrors,” Columbus Project Technical Memo UA-92-05 (Steward Mirror Lab, 1992).

Araya, C.

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

Atwood, B.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Belville, R.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Boccas, M.

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

Brewer, D.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Clow, H.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Davison, W. B.

W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
[CrossRef]

Ettlinger, E.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Greene, J. E.

J. A. Thornton and J. E. Greene, “Sputter deposition processes,” Handbook of Deposition Technologies for Films and Coatings, 2nd ed. (Noyes Publications, 1994), pp. 249–319.

Groessi, M.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Hill, J. M.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
[CrossRef]

J. M. Hill, J. R. P. Angel, and B. Olbert, “Rules for handling large borosilicate honeycomb mirrors,” Columbus Project Technical Memo UA-92-05 (Steward Mirror Lab, 1992).

Howard, J.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Krabbendam, V.

V. Krabbendam, “The Large Synoptic Survey Telescope concept design overview,” Proc. SPIE 7012, 701205 (2008).
[CrossRef]

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

Lutz, R. D.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Mason, J.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

McDonough, G.

J. R. Plaisted, G. McDonough, and G. Roche, “Effects of the anode configuration on substrate heating in dual magnetron sputtering,” White paper SL-WHITE3-270-01 (Advanced Energy Industries Corporation, 2001).

Miglietta, L.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Neill, D.

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

Nienaber, U.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

O’Brien, T.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Olbert, B.

J. M. Hill, J. R. P. Angel, and B. Olbert, “Rules for handling large borosilicate honeycomb mirrors,” Columbus Project Technical Memo UA-92-05 (Steward Mirror Lab, 1992).

Olbert, B. H.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Pappalardo, D.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Plaisted, J. R.

J. R. Plaisted, G. McDonough, and G. Roche, “Effects of the anode configuration on substrate heating in dual magnetron sputtering,” White paper SL-WHITE3-270-01 (Advanced Energy Industries Corporation, 2001).

Poczulp, G.

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

Roche, G.

J. R. Plaisted, G. McDonough, and G. Roche, “Effects of the anode configuration on substrate heating in dual magnetron sputtering,” White paper SL-WHITE3-270-01 (Advanced Energy Industries Corporation, 2001).

Sabol, B.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Schneermann, M.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Sebag, J.

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

Spiteri, J. A.

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

Steinbrecher, D.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Strittmatter, P. A.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Teiga, E.

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

Thornton, J. A.

J. A. Thornton and J. E. Greene, “Sputter deposition processes,” Handbook of Deposition Technologies for Films and Coatings, 2nd ed. (Noyes Publications, 1994), pp. 249–319.

Vera, E.

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

Vucina, T.

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

Williams, J. T.

W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
[CrossRef]

Proc. SPIE (7)

V. Krabbendam, “The Large Synoptic Survey Telescope concept design overview,” Proc. SPIE 7012, 701205 (2008).
[CrossRef]

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4m borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

J. Sebag, V. Krabbendam, G. Poczulp, D. Neill, T. Vucina, and M. Boccas, “LSST reflective coating studies,” Proc. SPIE 6273, 62730X (2006).
[CrossRef]

M. Boccas, T. Vucina, C. Araya, E. Vera, and C. Ah’Hee, “Coating the 8m Gemini telescopes with protected silver,” Proc. SPIE 5494, 239–253 (2004).
[CrossRef]

M. Schneermann, M. Groessi, U. Nienaber, E. Ettlinger, J. A. Spiteri, and H. Clow, “Design and performance of the VLT 8 meter coating unit,” Proc. SPIE 2871, 136–144 (1997).
[CrossRef]

B. Atwood, D. Pappalardo, T. O’Brien, J. M. Hill, J. Mason, R. Belville, D. Steinbrecher, D. Brewer, E. Teiga, B. Sabol, J. Howard, and L. Miglietta, “The aluminizing system for the 8.4 meter diameter LBT primary mirrors,” Proc. SPIE 6273, 62730T (2006).
[CrossRef]

W. B. Davison, J. T. Williams, and J. M. Hill, “Handling 20 tons of honeycomb mirror with a very gentle touch,” Proc. SPIE 3352, 216–224 (1998).
[CrossRef]

Other (4)

J. M. Hill, J. R. P. Angel, and B. Olbert, “Rules for handling large borosilicate honeycomb mirrors,” Columbus Project Technical Memo UA-92-05 (Steward Mirror Lab, 1992).

J. R. Plaisted, G. McDonough, and G. Roche, “Effects of the anode configuration on substrate heating in dual magnetron sputtering,” White paper SL-WHITE3-270-01 (Advanced Energy Industries Corporation, 2001).

Vishay Micro-Measurements, “Strain gage rosettes,” Technical Note TN-515 (Vishay Micro-Measurements, 2008), http://www.vishay.com/strain-gages/knowledge-base-list/technotes-list/.

J. A. Thornton and J. E. Greene, “Sputter deposition processes,” Handbook of Deposition Technologies for Films and Coatings, 2nd ed. (Noyes Publications, 1994), pp. 249–319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Test plate B with (a) samples and (b) reusable protective shield.

Fig. 2
Fig. 2

Comparison of measured surface temperatures and predicted mean temperatures for samples of different thicknesses: (a) Comparison of sample A4 ( thickness = 2 mm ) temperature measurements with predicted mean temperature increase. (b) Comparison of Pyrex sample A1 ( thickness = 12.7 mm ) temperature measurements with predicted mean temperature increase. (c) Comparison of borosilicate glass sample B1 ( thickness = 28 mm ) temperature measurements with predicted mean temperature increase.

Fig. 3
Fig. 3

Comparison of measured and predicted temperature differences: (a) Comparison of Pyrex sample A1 ( thickness = 12.7 mm ) measured and predicted temperature differences. (b) Comparison of borosilicate glass sample B1 ( thickness = 28 mm ) measured and predicted temperature differences.

Fig. 4
Fig. 4

Comparison of measured and predicted postcoating surface temperatures: (a) Comparison of Pyrex sample A1 ( thickness = 12.7 mm ) measured and predicted postcoating surface temperatures. (b) Comparison of borosilicate glass sample B1 ( thickness = 28 mm ) measured and predicted postcoating surface temperatures.

Fig. 5
Fig. 5

Maximum possible stress versus time for 10 and 40 kW power cases.

Fig. 6
Fig. 6

Back-surface strain measurements for (a) plate B and (b) plate C.

Tables (8)

Tables Icon

Table 1 Borosilicate Glass Characteristics

Tables Icon

Table 2 Samples Properties

Tables Icon

Table 3 Distribution of Sensors Per Test Plate

Tables Icon

Table 4 Temperature Results

Tables Icon

Table 5 Values Utilized in Calculations

Tables Icon

Table 6 Predicted Impact of Power Change on Coating Process

Tables Icon

Table 7 Thermal Output Correction for Back-Surface BSC Sample on B and C Plates

Tables Icon

Table 8 Back-Surface Stress Computations from Measured Strain

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q A σ ε ( T 1 4 T 2 4 ) = m c d T d t ,
T x T i = 2 Q A α t π k exp ( x 2 4 α t ) Q x A k ( 1 erf ( x 2 α t ) ) ,
ε Th = CTE * Δ T ,
S = ε M * E ,
ε = ε Th + ε M ,

Metrics