K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized non-negative least squares constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemometrics 20, 22–33 (2006).

[CrossRef]

P. J. Mc Carthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: a critical review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

A. R. Jones, “Light scattering for particle characterization,” Prog. Energy Combust. Sci. 25, 1–53 (1999).

[CrossRef]

P. C. Hansen, “Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms 6, 1–35 (1994).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

L. Eldén, “A weighted pseudoinverse, generalized singular values, and constrained least squares problems,” BIT Numer. Math 22, 487–502 (1982).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101(1963).

[CrossRef]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized non-negative least squares constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

O. C. Lingjearde and N. Christophersen, Regularization Principles: Solving Ill-Posed Inverse Problems, Lecture Notes to IN INVPAR, Department of Infomatics, University of Oslo (1998).

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

L. Eldén, “A weighted pseudoinverse, generalized singular values, and constrained least squares problems,” BIT Numer. Math 22, 487–502 (1982).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley, 1991), Vol. 1.

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

P. C. Hansen, “Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms 6, 1–35 (1994).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

A. R. Jones, “Light scattering for particle characterization,” Prog. Energy Combust. Sci. 25, 1–53 (1999).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemometrics 20, 22–33 (2006).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: a critical review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

O. C. Lingjearde and N. Christophersen, Regularization Principles: Solving Ill-Posed Inverse Problems, Lecture Notes to IN INVPAR, Department of Infomatics, University of Oslo (1998).

B. Martos, Nonlinear Programming: Theory and Methods (Akadémiai Kiadó, 1975).

P. J. Mc Carthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley, 1991), Vol. 1.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: a critical review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized non-negative least squares constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemometrics 20, 22–33 (2006).

[CrossRef]

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101(1963).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley, 1991), Vol. 1.

K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic, 2000).

W. I. Zangwill, Nonlinear Programming: a Unified Approach (Prentice-Hall, 1969).

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for optimization problems with a mixture of bounds and general linear constraints,” ACM Trans. Math. Software 10, 282–298 (1984).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

L. Eldén, “A weighted pseudoinverse, generalized singular values, and constrained least squares problems,” BIT Numer. Math 22, 487–502 (1982).

[CrossRef]

K. F. Ren, F. Xu, X. Cai, and J. M. Dorey, “Development of a precise and in situ turbidity measurement system,” Chem. Eng. Commun. 197, 250–259 (2010).

[CrossRef]

P. J. Mc Carthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: a critical review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101(1963).

[CrossRef]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemometrics 20, 22–33 (2006).

[CrossRef]

P. C. Hansen, “Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms 6, 1–35 (1994).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized non-negative least squares constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

A. R. Jones, “Light scattering for particle characterization,” Prog. Energy Combust. Sci. 25, 1–53 (1999).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

“Index of refraction,” Technical note 007 (Duke Scientific Corporation, 1 December 1996).

“Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (The International Association for the Properties of Water and Steam, September 1997).

P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley, 1991), Vol. 1.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

B. Martos, Nonlinear Programming: Theory and Methods (Akadémiai Kiadó, 1975).

W. I. Zangwill, Nonlinear Programming: a Unified Approach (Prentice-Hall, 1969).

R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic, 2000).

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

O. C. Lingjearde and N. Christophersen, Regularization Principles: Solving Ill-Posed Inverse Problems, Lecture Notes to IN INVPAR, Department of Infomatics, University of Oslo (1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).