Abstract

We present an analysis of the noise properties in a two-arm microscope imaging system. The aperture of the reference lens affects the imaging quality significantly. Using large apertures will enhance the resolution but also increase the noise. The effects from the distance the object is moved away from the original plane are also discussed, and we can obtain both good resolution and small noise by changing the distance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
    [CrossRef] [PubMed]
  3. P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996).
    [CrossRef]
  4. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
    [CrossRef]
  5. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef] [PubMed]
  6. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [CrossRef] [PubMed]
  7. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [CrossRef] [PubMed]
  8. Y. Cai and S. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716–2718 (2004).
    [CrossRef] [PubMed]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef] [PubMed]
  10. D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [CrossRef]
  11. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [CrossRef] [PubMed]
  12. G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
    [CrossRef]
  13. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
    [CrossRef]
  14. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
    [CrossRef]
  15. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [CrossRef] [PubMed]
  16. J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
    [CrossRef]
  17. P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222–1224 (2009).
    [CrossRef] [PubMed]
  18. W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
    [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  20. Y. Bai, H. Liu, and S. Han, “Transmission area and correlated imaging,” Opt. Express 15, 6062–6068 (2007).
    [CrossRef] [PubMed]
  21. M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
    [CrossRef]

2009

2008

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

2007

Y. Bai, H. Liu, and S. Han, “Transmission area and correlated imaging,” Opt. Express 15, 6062–6068 (2007).
[CrossRef] [PubMed]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

2006

J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

2005

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

2004

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

Y. Cai and S. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716–2718 (2004).
[CrossRef] [PubMed]

2002

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

1999

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

1996

P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996).
[CrossRef]

1995

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

1964

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

Bai, Y.

Barbosa, G. A.

P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

Cai, Y.

Cao, D.

D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Chan, K. W. C.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

Cheng, J.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef] [PubMed]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

Gong, W.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Han, S.

P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222–1224 (2009).
[CrossRef] [PubMed]

Y. Bai, H. Liu, and S. Han, “Transmission area and correlated imaging,” Opt. Express 15, 6062–6068 (2007).
[CrossRef] [PubMed]

J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef] [PubMed]

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

Huang, D.

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

Kolobov, M. I.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

Liu, H.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Y. Bai, H. Liu, and S. Han, “Transmission area and correlated imaging,” Opt. Express 15, 6062–6068 (2007).
[CrossRef] [PubMed]

Liu, Y.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Martienssen, W.

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

O’Sullivan, M. N.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Ribeiro, P. H.

P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996).
[CrossRef]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

Sergienko, A. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Shen, S.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Shen, X.

P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222–1224 (2009).
[CrossRef] [PubMed]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Shih, Y.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

Shih, Y. H.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Spiller, E.

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

Wang, K.

D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Wei, Q.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Xiong, J.

D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Yan, Y.

J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
[CrossRef]

Zhang, M.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Zhang, P.

Zhu, S.

Am. J. Phys.

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Appl. Phys. Lett.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

Chin. Phys.

J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Phys. Rev. Lett.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-arm microscope imaging system.

Fig. 2
Fig. 2

Normalized imaging signal G ( u 2 ) (dot–dash curve) and its fluctuation Δ G ( u 2 ) (solid curve) versus u 2 for (a) a r = 6 mm , (b) a r = 10 mm , and (c) a r = 15 mm . Other parameters are chosen as λ = 532 nm , a = 0.5 mm .

Fig. 3
Fig. 3

Normalized intensity correlation G ( u 2 ) (dot–dash curve) and its fluctuation Δ G ( u 2 ) (solid curve) as a function of u 2 for (a) Δ z = 0 and (b) Δ z = 100 mm .

Fig. 4
Fig. 4

Amplitude of the noise versus Δ z . Other parameters are the same as those in Fig. 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h 1 ( x 1 , u 1 ) = d x e i k z 0 i λ z 0 exp [ i π λ z 0 ( x x 1 ) 2 ] t ( x ) × sinc [ a t λ z 1 ( x + u 1 M 1 ) ] ,
h 2 ( x 2 , u 2 ) = d x e i k z 0 i λ z 0 exp [ i π λ z 0 ( x x 2 ) 2 ] × sinc [ a r λ z 3 ( x + u 2 M 2 ) ] ,
G ( u 1 , u 2 ) = Δ I 1 ( u 1 ) Δ I 2 ( u 2 ) = | Γ ( x 1 , x 2 ) h 1 ( x 1 , u 1 ) h 2 * ( x 2 , u 2 ) d x 1 d x 2 | 2 ,
Δ G ( u 1 , u 2 ) = { [ Δ I 1 Δ I 2 ] 2 [ Δ I 1 Δ I 2 ] 2 } 1 / 2 .
Γ ( x 1 , x 2 ) = G 0 exp ( x 1 2 + x 2 2 4 a 2 ) δ ( x 1 x 2 ) ,
h 1 ( x 1 , u 1 ) = d x e i k ( z 0 + Δ z ) i λ ( z 0 + Δ z ) exp [ i π ( x x 1 ) 2 λ ( z 0 + Δ z ) ] × t ( x ) sinc [ a t λ ( x z 1 Δ z + u 1 z 2 ) ] .
Δ G ( u 1 , u 2 ) G ( u 1 , u 2 ) = [ ( I 1 ( u 1 ) I 2 ( u 2 ) G ( u 1 , u 2 ) + 2 ) 2 1 ] 1 / 2 = [ ( 1 V + 2 ) 2 1 ] 1 / 2 ,

Metrics