M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

S. Roux, J. Réthoré, and F. Hild, “Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks,” J. Phys. D 42, 214004 (2009).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

H. Jin and H. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).

[CrossRef]

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

T. F. Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42, 6783–6796 (2003).

[CrossRef]

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Opt. Lasers Eng. 39, 479–488 (2003).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).

[CrossRef]
[PubMed]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

Z. Feng and R. E. Rowlands, “Continuous full-field representation and differentiation of three-dimensional experimental vector data,” Comput. Struct. 26, 979–990 (1987).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

H. Jin and H. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

M. D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge U. Press, 2003).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” Laboratoire de Mathematiques Appliquees. (Springer-Verlag, 1977), pp. 85–100.

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

Z. Feng and R. E. Rowlands, “Continuous full-field representation and differentiation of three-dimensional experimental vector data,” Comput. Struct. 26, 979–990 (1987).

[CrossRef]

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).

[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

S. Roux, J. Réthoré, and F. Hild, “Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks,” J. Phys. D 42, 214004 (2009).

[CrossRef]

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

H. Jin and H. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).

[CrossRef]

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Opt. Lasers Eng. 39, 479–488 (2003).

[CrossRef]

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

S. Roux, J. Réthoré, and F. Hild, “Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks,” J. Phys. D 42, 214004 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

S. Roux, J. Réthoré, and F. Hild, “Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks,” J. Phys. D 42, 214004 (2009).

[CrossRef]

Z. Feng and R. E. Rowlands, “Continuous full-field representation and differentiation of three-dimensional experimental vector data,” Comput. Struct. 26, 979–990 (1987).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Opt. Lasers Eng. 39, 479–488 (2003).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

G. B. Wright, “Radial basis function interpolation: numerical and analytical developments,” Ph.D. dissertation (University of Colorado, 2003).

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Opt. Lasers Eng. 39, 479–488 (2003).

[CrossRef]

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

T. F. Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42, 6783–6796 (2003).

[CrossRef]

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).

[CrossRef]
[PubMed]

X. Dai, Y. C. Chan, and A. C. K. So, “Digital speckle correlation method based on wavelet-packet noise-reduction processing,” Appl. Opt. 38, 3474–3482 (1999).

[CrossRef]

Z. Feng and R. E. Rowlands, “Continuous full-field representation and differentiation of three-dimensional experimental vector data,” Comput. Struct. 26, 979–990 (1987).

[CrossRef]

M. Bornert, F. Brémand, P. Doumalin, J. C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J. J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech. 49, 353–370 (2009).

[CrossRef]

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39(2001).

[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).

[CrossRef]

H. Jin and H. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).

[CrossRef]

S. Roux, J. Réthoré, and F. Hild, “Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks,” J. Phys. D 42, 214004 (2009).

[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).

[CrossRef]

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).

[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).

[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).

[CrossRef]

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Opt. Lasers Eng. 39, 479–488 (2003).

[CrossRef]

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

M. D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge U. Press, 2003).

[CrossRef]

G. B. Wright, “Radial basis function interpolation: numerical and analytical developments,” Ph.D. dissertation (University of Colorado, 2003).

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” Laboratoire de Mathematiques Appliquees. (Springer-Verlag, 1977), pp. 85–100.