Abstract

Double femtosecond laser pulses are usually generated by using a Michelson structure. We propose a novel and simple device by using two high-density transmissive gratings for generation of double pulses and conversion between single and double laser pulses by shifting one of the two gratings by a quarter period. The apparatus has the advantages of compact volume, simple structure, and convenience in manipulation. Experimental outputs of the double laser pulses are well verified in experiment, which can be properly explained by numerical simulation with the rigorous coupled-wave theory. This structure provides an interesting approach for generation of double pulses and conversion between single and double laser pulses for practical applications of the femtosecond laser.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437(2009).
    [Crossref]
  2. D. Lee, S. Akturk, P. Gabolde, and R. Trebino, “Experimentally simple, extremely broadband transient-grating frequency-resolved-optical gating arrangement,” Opt. Express 15, 760–766 (2007).
    [Crossref] [PubMed]
  3. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16, 13663–13675 (2008).
    [Crossref] [PubMed]
  4. D. Z. Kandula, A. Renault, C. Gohle, A. L. Wolf, S. Witte, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “Ultrafast double-pulse parametric amplification for precision Ramsey metrology,” Opt. Express 16, 7071–7082 (2008).
    [Crossref] [PubMed]
  5. Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulses ablation of Cr film on glass,” Opt. Commun. 281, 4723–4726(2008).
    [Crossref]
  6. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453-454, 501–505 (2004).
    [Crossref]
  7. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929–934 (1986).
    [Crossref]
  8. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767–772 (2005).
    [Crossref]
  9. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
    [Crossref] [PubMed]
  10. J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24, 979–984 (2007).
    [Crossref]
  11. B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Jena) 119, 74–80 (2008).
    [Crossref]
  12. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
    [Crossref]
  13. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13, 8642–8661 (2005).
    [Crossref] [PubMed]
  14. J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitting of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075–1083 (2008).
    [Crossref]
  15. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008).
    [Crossref] [PubMed]

2009 (1)

2008 (6)

2007 (2)

2005 (3)

2004 (2)

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453-454, 501–505 (2004).
[Crossref]

1986 (1)

Akturk, S.

Bai, B.

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Jena) 119, 74–80 (2008).
[Crossref]

Bowlan, P.

Cao, H.

Dai, E.

Dorrer, C.

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453-454, 501–505 (2004).
[Crossref]

Eikema, K. S. E.

Feng, J.

Fuchs, U.

Gabolde, P.

Gohle, C.

Gu, X.

Han, Z.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulses ablation of Cr film on glass,” Opt. Commun. 281, 4723–4726(2008).
[Crossref]

Hogervorst, W.

Jia, W.

Kandula, D. Z.

Lee, D.

Li, G.

Lv, P.

Martinez, O. E.

Renault, A.

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453-454, 501–505 (2004).
[Crossref]

Trebino, R.

Ubachs, W.

Walmsley, I.

Wang, B.

Witte, S.

Wolf, A. L.

Xie, J.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulses ablation of Cr film on glass,” Opt. Commun. 281, 4723–4726(2008).
[Crossref]

Zeitner, U. D.

Zheng, J.

Zhou, C.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulses ablation of Cr film on glass,” Opt. Commun. 281, 4723–4726(2008).
[Crossref]

Opt. Express (5)

Optik (Jena) (1)

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Jena) 119, 74–80 (2008).
[Crossref]

Thin Solid Films (1)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453-454, 501–505 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of generation of double pulses by using two identical gratings with period of d and distance L between them (a) when the two gratings are placed in one position with y = 0 and (b) conversion into a single pulse when one grating is moved by y = d / 4 or 3 d / 4 .

Fig. 2
Fig. 2

Second output pulse width (FWHM) is shown as a function of the perpendicular distance between two gratings with period of d = 1.368 μm . The marked points (×) are implemented in this experiment.

Fig. 3
Fig. 3

Ratio δ between the second output pulse width and the input pulse width is related to the input pulse width for a grating with period d = 1.368 μm .

Fig. 4
Fig. 4

(a) Normalized intensity of the second pulse as a function of time delay Δ t between two femtosecond laser pulses. The marked point (×) denotes the time delay when the output laser intensity is reduced to 70%. (b) The spatial combined second laser distribution. The diamond (blue) line and the square (red) line are the theoretical laser intensities when the distances of two gratings are L = 0 mm and L = 2.31 mm , respectively.

Fig. 5
Fig. 5

Scanning electron micrograph of the high-density transmissive grating. The fabricated two gratings with period of d = 1.31 μm and etched depth of h = 0.59 μm .

Fig. 6
Fig. 6

(a) FROG trace of the measured double pulses when time delay is Δ t = 337.2 fs ; (b) retrieved double pulses in the time domain under the same condition.

Fig. 7
Fig. 7

(a) FROG trace of the measured single pulse; (b) retrieved single pulse in the time domain.

Fig. 8
Fig. 8

(a) FROG trace of the measured double pulses when the time delay is Δ t = 467.2 fs ; (b) retrieved double pulses in the time domain under the same condition.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E i ( x i , y i , t ) = exp ( 2 ln 2 t 2 τ i 2 ) exp ( i b t 2 ) exp [ i k ( x i 2 + y i 2 ) 2 q ( z i ) ] ,
E i ( x i , y i , w ) = E i ( w ) exp [ i k ( x i 2 + y i 2 ) 2 q ( z i ) ] ,
E i ( w ) = exp [ ln 2 τ i 2 w 2 8 ( ln 2 ) 2 + 2 b 2 τ i 4 ] exp [ i b τ i 4 w 2 ( 4 ln 2 ) 2 + ( 2 b τ i 2 ) 2 ] .
E o ( x o , y o , w ) E i ( w ) exp ( i k β 2 w 2 z o 2 ) exp [ i k y o 2 2 q ( z i + z o ) ] exp [ i k ( x o + β w α z o ) 2 2 q ( z i + α 2 z o ) ] ,
α = 1 [ 1 ( λ 0 / d ) 2 ] 1 2 ,
β = λ 0 2 2 π · c · d [ 1 ( λ 0 / d ) 2 ] 1 2 ,
τ 0 = 1 Re ( 1 / 8 ln 2 × P ) ,
P = ln 2 × τ i 2 8 ( ln 2 ) 2 + 2 b 2 τ i 4 + i [ b τ i 4 ( 4 ln 2 ) 2 + ( 2 b τ i 2 ) 2 k β 2 z o 2 + k β 2 α 2 z o 2 2 q ( z i + α 2 z o ) ] .
τ 0 = τ i [ ( 1 A B ) 2 + ( B D ) 2 τ 4 + A D ( A D 2 A B + 2 ) ] 1 2 ,
δ = τ o τ i .
E o ( x o , y o ) exp [ i k · x o 2 2 σ 2 ] · { exp [ i k ( y o y o ) 2 2 σ 2 ] + exp [ i k ( y o + y o ) 2 2 σ 2 ] } ,
y o = L · tan θ = Δ t · c tan θ ( 1 / cos θ ) 1 ,
η 0 = 2 η ± 1 .
η 0 = | E 0 | 2 = | M e i k z i n eff 0 h + ( 1 M ) e i k z i n eff 2 h | 2 = 1 4 M ( 1 M ) sin 2 Δ ϕ 2 ,
η 1 = η 1 = | E 1 | 2 = 4 N 2 sin 2 Δ ϕ 2 ,
M = 1 d 0 d t in 0 u 0 ( y i ) d y i , N = | 1 d 0 d [ t in 0 u 0 ( y i ) cos k y i y i ] d y i | , Δ ϕ = ( n eff 0 n eff 2 ) k z i h ,
4 [ 2 N 2 + M ( 1 M ) ] sin 2 Δ ϕ 2 = 1.
E + 1 = E 0 exp [ i ( w t k z o z o k y o y o ) ] ,
E 1 = E 0 exp [ i ( w t k z o z o + k y o y o ) ] .
Δ φ = 2 k y o y o = 4 π d y o ,
Δ t = L c [ 1 cos ( arcsin ( λ 0 / d ) ) 1 ] .

Metrics