Abstract

A detailed investigation has been undertaken into the transmission mode of the matched fiber Bragg grating interrogation scheme with respect to its use in optical fiber sensor applications. Analytical and numerical models of the scheme have been developed. Experimental studies presented include the effect of the spectral characteristics of the gratings on system performance, results of strain and compression calibrations, a scheme to correct for intensity fluctuations, and the correction of tem perature-induced shifts by collocating sensor and reference gratings. The results are in good agreement with a simplified model of the transmission mode. The analysis provides quantitative relationships between key sensor design parameters, such as sensitivity and measurement range as a function of grating bandwidth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. J. M. López-Higuera, Handbook of Optical Fiber Sensing Technology (Wiley, 2002).
  3. M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
    [CrossRef]
  4. J. L. Santos and L. A. Ferreira, “Fiber Bragg grating interrogation techniques,” in Handbook of Optical Fiber Sensing Technology, J.M.López-Higuera, ed. (Wiley, 2002), pp. 379–402.
  5. Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41, 1–18 (2004).
    [CrossRef]
  6. Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  7. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  8. S. H. Yun, D. J. Richardson, and B. Y. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23, 843–845 (1998).
    [CrossRef]
  9. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, and J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1994 (1993).
    [CrossRef] [PubMed]
  10. M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fiber Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
    [CrossRef]
  11. R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
    [CrossRef]
  12. R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
    [CrossRef]
  13. C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
    [CrossRef]
  14. A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939(1997).
    [CrossRef] [PubMed]
  15. S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
    [CrossRef]
  16. N. Mohammad, W. Szyszkowski, W. J. Zhang, E. I. Haddad, J. Zou, W. Jamroz, and R. Kruzelecky, “Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression,” J. Lightwave Technol. 22, 2001–2013 (2004).
    [CrossRef]
  17. R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, “Wavelength dependence of bending loss in monomode optical fibers: effect of the fiber buffer coating,” Opt. Lett. 15, 947–949 (1990).
    [CrossRef] [PubMed]
  18. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Polarization dependence of bend loss for a standard single mode fiber,” Opt. Express 15, 4909–4920 (2007).
    [CrossRef] [PubMed]

2007 (2)

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Polarization dependence of bend loss for a standard single mode fiber,” Opt. Express 15, 4909–4920 (2007).
[CrossRef] [PubMed]

2004 (2)

2002 (1)

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

2001 (1)

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

1998 (1)

1997 (5)

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939(1997).
[CrossRef] [PubMed]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1995 (1)

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fiber Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

1993 (1)

1990 (1)

Archambault, J. L.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Baker, W.

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Barton, J. S.

Bennion, I.

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

Davis, C.

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fiber Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

Fallon, R. W.

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Farrell, G.

Ferreira, L. A.

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939(1997).
[CrossRef] [PubMed]

J. L. Santos and L. A. Ferreira, “Fiber Bragg grating interrogation techniques,” in Handbook of Optical Fiber Sensing Technology, J.M.López-Higuera, ed. (Wiley, 2002), pp. 379–402.

Forsyth, D. I.

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Galea, S.

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Gloag, A.

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

Grattan, K. T. V.

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Guofu, Q.

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Haddad, E. I.

Harper, P. G.

Jackson, D. A.

Jamroz, W.

Jones, J. D. C.

Jones, R.

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fiber Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

Kim, B. Y.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kruzelecky, R.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Liao, Y.

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41, 1–18 (2004).
[CrossRef]

Lobo Ribeiro, A. B.

López-Higuera, J. M.

J. M. López-Higuera, Handbook of Optical Fiber Sensing Technology (Wiley, 2002).

Mohammad, N.

Morgan, R.

Moss, S.

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Nichols, C. J.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Nichols, J. M.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Rajan, G.

Rao, Y. J.

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Reekie, L.

Richardson, D. J.

Santos, J. L.

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939(1997).
[CrossRef] [PubMed]

J. L. Santos and L. A. Ferreira, “Fiber Bragg grating interrogation techniques,” in Handbook of Optical Fiber Sensing Technology, J.M.López-Higuera, ed. (Wiley, 2002), pp. 379–402.

Seaver, M.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Szyszkowski, W.

Todd, M. D.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Trickey, S. T.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Virgin, L. N.

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Wade, S. A.

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Wang, P.

Wang, Q.

Yun, S. H.

Zhang, L.

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

Zhang, W. J.

Zhao, Y.

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41, 1–18 (2004).
[CrossRef]

Zou, J.

Appl. Opt. (1)

Electron. Lett. (2)

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707(1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fiber Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

J. Lightwave Technol. (2)

N. Mohammad, W. Szyszkowski, W. J. Zhang, E. I. Haddad, J. Zou, W. Jamroz, and R. Kruzelecky, “Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression,” J. Lightwave Technol. 22, 2001–2013 (2004).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41, 1–18 (2004).
[CrossRef]

Opt. Lett. (3)

Philos. Trans. R. Soc. London Ser. A (1)

M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, C. J. Nichols, and L. N. Virgin, “Bragg grating-based fiber optic sensors in structural health monitoring,” Philos. Trans. R. Soc. London Ser. A 365, 317–343 (2007).
[CrossRef]

Proc. SPIE (1)

C. Davis, W. Baker, S. Moss, S. Galea, and R. Jones, “In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement,” Proc. SPIE 4934, 140–149 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

S. A. Wade, D. I. Forsyth, K. T. V. Grattan, and Q. Guofu, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Other (3)

J. L. Santos and L. A. Ferreira, “Fiber Bragg grating interrogation techniques,” in Handbook of Optical Fiber Sensing Technology, J.M.López-Higuera, ed. (Wiley, 2002), pp. 379–402.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

J. M. López-Higuera, Handbook of Optical Fiber Sensing Technology (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a basic matched FBG interrogation arrangement with a reference detector.

Fig. 2
Fig. 2

Diagram of the relative spectra of FBG 1 (here the sensor grating) and FBG 2 (here the reference grating). The spectra measured by the detector and the power measured are shown for three cases when the strain applied to FBG 1 increases from (a) to (b) and (c).

Fig. 3
Fig. 3

Power measured with the matched FBG system as a function of wavelength mismatch between the reference and the sensor gratings for FBGs with a FWHM between 0.2 and 0.5 nm .

Fig. 4
Fig. 4

Relative sensitivity of the matched FBG detection method as a function of wavelength difference between the sensor and the reference FBG for FBGs with a FWHM between 0.2 and 0.5 nm .

Fig. 5
Fig. 5

Effect of the FWHM of the gratings on the wavelength difference at which peak sensitivity occurs and on the range of wavelength differences for which the sensitivity is greater than 20% of the maximum sensitivity measured.

Fig. 6
Fig. 6

Example of the numerical analysis of the matched Bragg grating sensing scheme using measured grating spectra together with fits produced using the analytical model.

Fig. 7
Fig. 7

Experimental arrangements used in matched FBG system tests.

Fig. 8
Fig. 8

Example of spectra measured with an OSA for various applied strains (Fbg1s&r).

Fig. 9
Fig. 9

Example of the output of a matched FBG system for strain calibrations of several combinations of grating pairs with different FWHM.

Fig. 10
Fig. 10

Relative sensitivity of measurements obtained in strain calibrations of several combinations of grating pairs with different FWHM.

Fig. 11
Fig. 11

Experimentally measured strain at which peak sensitivity occurs and the strain range over which the sensitivity is greater than 20% of the peak sensitivity for grating pairs with different FWHM.

Fig. 12
Fig. 12

Results of compression calibration.

Fig. 13
Fig. 13

Strain calibrations at various temperatures for collocated reference and sensor gratings. Also shown is an additional calibration when the sensor grating was at 45 ° C and the reference grating was at 24 ° C . The upper graph shows the deviations of the experimental data from the fit with the vertical units of maximum equivalent strain error.

Tables (1)

Tables Icon

Table 1 Details of Fiber Bragg Gratings Used ( λ c , Center Wavelength; R, Reflectance)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( λ ) = A 1 exp ( ( λ λ 1 ) 2 2 σ 1 2 ) ,
Δ λ 1 = σ 1 2 2 ln 2 .
P 2 ( λ ) = 1 A 2 exp ( ( λ λ 2 ) 2 2 σ 2 2 ) ,
P d ( λ ) = P 1 ( λ ) P 2 ( λ ) d λ = A 1 σ 1 2 π ( 1 A 2 σ 2 ( σ 2 2 + σ 1 2 ) 1 / 2 exp ( ( λ Δ ) 2 2 ( σ 2 2 + σ 1 2 ) ) ) ,
S ( λ Δ ) = 1 P d d P d d λ Δ .
S ( λ Δ ) = A 2 λ Δ σ 2 ( σ 2 2 + σ 1 2 ) ( A 2 σ 2 ( σ 1 2 + σ 2 2 ) 1 / 2 exp ( λ Δ 2 2 ( σ 2 2 + σ 1 2 ) ) ) .
ε = m g / A Y ,

Metrics