Abstract

The intracavity signal and idler pulses of a low-loss synchronously pumped doubly resonant optical parametric oscillator were characterized experimentally and simulated numerically versus cavity-length detuning. At operation several hundreds of times above threshold, the detunings that maximize the intracavity average power do not necessarily maximize the temporal overlap of the signal and idler pulses, as is desirable for devices making use of intracavity mixing. Independent control of the signal and idler cavity lengths allowed control of the widths and temporal positioning of the pulses. Numerical studies were performed exploring the intracavity power and temporal overlap of the signal and idler pulses under various group-velocity-mismatch conditions. There was good agreement between the experimental and numerical simulation results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
    [CrossRef] [PubMed]
  2. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
    [CrossRef]
  3. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
    [CrossRef]
  4. G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4μm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52, 717–724 (2007).
    [CrossRef] [PubMed]
  5. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4–2.4μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32, 1414–1416 (2007).
    [CrossRef] [PubMed]
  6. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
    [CrossRef]
  7. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
    [CrossRef]
  8. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990).
    [CrossRef]
  9. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
    [CrossRef] [PubMed]
  10. B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [CrossRef]
  13. A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
    [CrossRef]
  14. S. Schiller, “Principles and applications of optical monolithic total-internal-reflection resonators,” Ph.D. dissertation (Stanford University, 1993).
  15. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  16. A. Haché, G. R. Allan, and H. M. van Driel, “Effects of cavity detuning on the pulse characteristics of a femtosecond synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2209–2213 (1995).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Science, 1986).
  18. J. E. Schaar, “Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide,” Ph.D. dissertation (Stanford University, 2009).

2008 (1)

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

2007 (3)

2005 (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

1998 (2)

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
[CrossRef]

M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
[CrossRef]

1997 (1)

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

1995 (1)

1994 (1)

1991 (1)

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

1990 (1)

1971 (1)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Aleksandrovskii, A. L.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Allan, G. R.

Bliss, D.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Cheung, E. C.

Dearborn, M. E.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Diels, J. C.

Ershova, G. I.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Falk, J.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

Fejer, M. M.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef] [PubMed]

Gale, B. J. S.

Haché, A.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Harris, J. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Hurlbut, W.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Jundt, D.

Kitaeva, G. Kh.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Koch, K.

Kozlov, V. G.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Kulik, S. P.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Kuo, P. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Lin, A.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Liu, J. M.

Lynch, C.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

McConnell, G.

G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4μm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52, 717–724 (2007).
[CrossRef] [PubMed]

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

Moore, G. T.

Naumova, I. I.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
[CrossRef]

Reid, D. T.

J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4–2.4μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32, 1414–1416 (2007).
[CrossRef] [PubMed]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Schaar, J. E.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef] [PubMed]

J. E. Schaar, “Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide,” Ph.D. dissertation (Stanford University, 2009).

Schiller, S.

S. Schiller, “Principles and applications of optical monolithic total-internal-reflection resonators,” Ph.D. dissertation (Stanford University, 1993).

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Small, D. L.

Sun, J. H.

Tarasenko, V. V.

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

van Driel, H. M.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Vodopyanov, K. L.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef] [PubMed]

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
[CrossRef]

Zelmon, D. E.

Appl. Phys. B (1)

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (4)

Phys. Med. Biol. (1)

G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4μm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52, 717–724 (2007).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991).
[CrossRef]

Other (4)

S. Schiller, “Principles and applications of optical monolithic total-internal-reflection resonators,” Ph.D. dissertation (Stanford University, 1993).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. E. Siegman, Lasers (University Science, 1986).

J. E. Schaar, “Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide,” Ph.D. dissertation (Stanford University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the doubly resonant SPOPO. TFP, thin film polarizer; MMO, mode-matching optics.

Fig. 2
Fig. 2

(a) Experimental and (b) numerically calculated results for P tot at constant times above threshold. (c) Experimental and (d) numerically calculated results for extracavity signal + idler SFG, with the maximum SFG values normalized to unity.

Fig. 3
Fig. 3

Signal and idler measured (circles and squares) and numerically calculated (solid and dashed curves) cross correlations with the pump for a detuning in (a) quadrant II and (b) quadrant IV of Fig. 2. The maximum intensities are normalized to unity.

Metrics